The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Berezutsky M.A.

Razumovsky Saratov State Medical University

Durnova N.A.

Razumovsky Saratov State Medical University

Andronova T.A.

Razumovsky Saratov State Medical University

Ginkgolide B: mechanisms of neurobiological effects, prospects for use in the therapy of Alzheimer’s disease

Authors:

Berezutsky M.A., Durnova N.A., Andronova T.A.

More about the authors

Read: 2705 times


To cite this article:

Berezutsky MA, Durnova NA, Andronova TA. Ginkgolide B: mechanisms of neurobiological effects, prospects for use in the therapy of Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(4):22‑27. (In Russ.)
https://doi.org/10.17116/jnevro202412404122

Recommended articles:
Neurochemical mechanisms of tremor in Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):64-72
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121
Non-invasive biomarkers for early diagnosis of Alzheimer’s disease in bodily fluids. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):8-16
App-based first aid learning: what applications do we have now?. Russian Journal of Anesthesiology and Reanimatology. 2024;(6):89-103

References:

  1. Kovalenko EA, Makhnovich EV, Osinovskaya NA, et al. Focused ultrasound as a non-invasive method with therapeutic potential in patients with Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(10):38-45. (In Russ.). https://doi.org/10.17116/jnevro202212210138
  2. Gavrilova SI, Kolykhalov IV, Kulik AS, et al. Clinical experience of the use of memantal in patients with moderate and severe Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2016;116(2):52-57. (In Russ.). https://doi.org/10.17116/jnevro20161162152-57
  3. Selezneva ND, Gavrilova SI. Cerebrolysin Treatment Reduces the Risk of Mild Cognitive Decline to Dementia in 1st-Degree Relatives of Alzheimer’s Patients: A Prospective Comparative Study. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(8):90-97. (In Russ.). https://doi.org/10.17116/jnevro202312308190
  4. Scheltens P, Blennow K, Breteler MM, et al. Alzheimer’s disease. Lancet. 2016;388(10043):505-517.  https://doi.org/10.1016/S0140-6736(15)01124-1
  5. Bachurin SO, Bovina EV, Ustyugov AA. Drugs in clinical trials for Alzheimer’s disease: the major trends. Med Res Rev. 2017;37(5):1186-1225. https://doi.org/10.1002/med.21434
  6. Jefferies WA, Price KA, Biron KE, et al. Adjusting the compass: new insights into the role of angiogenesis in Alzheimer’s disease. Alzheimers Res Ther. 2013;5(6):64.  https://doi.org/10.1186/alzrt230
  7. Ma S, Liu X, Xun Q, et al. Neuroprotective effect of Ginkgolide K against H2O2-induced PC12 cell cytotoxicity by ameliorating mitochondrial dysfunction and oxidative stress. Biol Pharm Bull. 2014;37(2):217-225.  https://doi.org/10.1248/bpb.b13-00378
  8. van Beek TA. Ginkgolides and bilobalide: their physical, chromatographic and spectroscopic properties. Bioorg Med Chem. 2005;13(17):5001-5012. https://doi.org/10.1016/j.bmc.2005.05.056
  9. Li C, Liu K, Liu S, et al. Role of ginkgolides in the inflammatory immune response of neurological diseases: a review of current literatures. Front Syst Neurosc. 2020;14:45.  https://doi.org/10.3389/fnsys.2020.00045
  10. Xia SH, Fang DC. Pharmacological action and mechanisms of ginkgolide B. Chin Med J. 2007;120(10):922-928. 
  11. Maclennan KM, Darlington CL, Smith PF. The CNS effects of Ginkgo biloba extracts and ginkgolide B. Prog Neurobiol. 2002;67(3):235-257.  https://doi.org/10.1016/S0301-0082(02)00015-1
  12. Wu X, Zhou C, Du F, et al. Ginkgolide B preconditioning on astrocytes promotes neuronal survival in ischemic injury via up-regulating erythropoietin secretion. Neurochem Int. 2013;62(2):157-164.  https://doi.org/10.1016/j.neuint.2012.11.007
  13. Fang W, Deng Y, Li Y, et al. Blood brain barrier permeability and therapeutic time window of Ginkgolide B in ischemia—reperfusion injury. Eur J Pharm Sci. 2010;39(1-3):8-14.  https://doi.org/10.1016/j.ejps.2009.10.002
  14. Palmer AM. Neuroprotective therapeutics for Alzheimer’s disease: progress and prospects. Trends Pharmacol Sci. 2011;32(3):141-147.  https://doi.org/10.1016/j.tips.2010.12.007
  15. Masters CL, Bateman R, Blennow K, et al. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056. https://doi.org/10.1038/nrdp.2015.56
  16. Li L, Zhang QG, Lai LY, et al. Neuroprotective effect of ginkgolide B on bupivacaine-induced apoptosis in SH-SY5Y cells. Oxid Med Cell Longev. 2013;2013:159864. https://doi.org/10.1155/2013/159864
  17. Zhang C, Tian X, Luo Y, et al. Ginkgolide B attenuates ethanol-induced neurotoxicity through regulating NADPH oxidases. Toxicology. 2011;287(1-3):124-130.  https://doi.org/10.1016/j.tox.2011.06.006
  18. Meng H, Li C. Feng L, et al. Effects of Ginkgolide B on 6-OHDA-induced apoptosis and calcium over load in cultured PC12. Int J Dev Neurosci. 2007;25(8):509-514.  https://doi.org/10.1016/j.ijdevneu.2007.09.010
  19. Wang L, Lei Q, Zhao S, et al. Ginkgolide B maintains calcium homeostasis in hypoxic hippocampal neurons by inhibiting calcium influx and intracellular calcium release. Front Cell Neurosci. 2021;14:627846. https://doi.org/10.3389/fncel.2020.627846
  20. Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging. 2021;107:86-95.  https://doi.org/10.1016/J.NEUROBIOLAGING.2021.07.014
  21. Majid A. Neuroprotection in stroke: past, present, and future. ISRN Neurol. 2008;55(3):363-389.  https://doi.org/10.1155/2014/515716
  22. Long JM, Holtzman DM. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell. 2019;179(2):312-339.  https://doi.org/10.1016/j.cell.2019.09.001
  23. Wang J, Ding Y, Zhuang L, et al. Ginkgolide B-induced AMPK pathway activation protects astrocytes by regulating endoplasmic reticulum stress, oxidative stress and energy metabolism induced by Aβ1-42. Mol Med Rep. 2021;23(6):457.  https://doi.org/10.3892/mmr.2021.12096
  24. Bate C, Salmona M, Williams A. Ginkgolide B inhibits the neurotoxicity of prions or amyloid-β1-42. J Neuroinflammation. 2004;1(1):4.  https://doi.org/10.1186/1742-2094-1-4
  25. Shi C, Zhao L, Zhu B, et al. Protective effects of Ginkgo biloba extract (EGb761) and its constituents quercetin and ginkgolide B against β-amyloid peptide-induced toxicity in SH-SY5Y cells. Chem Biol Interact. 2009;181(1):115-123.  https://doi.org/10.1016/j.cbi.2009.05.010
  26. Xiao Q, Wang C, Li J, et al. Ginkgolide B protects hippocampal neurons from apoptosis induced by beta-amyloid 25—35 partly via up-regulation of brain-derived neurotrophic factor. Eur J Pharmacol. 2010;647(1-3):48-54.  https://doi.org/10.1016/j.ejphar.2010.08.002
  27. Elferink LA, Scheller RH. Synaptic vesicle proteins and regulated exocytosis. J Cell Sci Suppl. 1993;17:75-79.  https://doi.org/10.1242/jcs.1993.supplement_17.11
  28. DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol. 1990;27(5):457-464.  https://doi.org/10.1002/ana.410270502
  29. Bate C, Tayebi M, Williams A. Ginkgolides protect against amyloid-β1—42-mediated synapse damage in vitro. Mol Neurodegener. 2008;3:1.  https://doi.org/10.1186/1750-1326-3-1
  30. Kaur N, Dhiman M, Perez‐Polo JR, et al. Ginkgolide B revamps neuroprotective role of apurinic/apyrimidinic endonuclease 1 and mitochondrial oxidative phosphorylation against Aβ25—35‐induced neurotoxicity in human neuroblastoma cells. J Neurosci Res. 2015;93(6):938-947.  https://doi.org/10.1002/jnr.23565
  31. Sachdeva AK, Chopra K. Lycopene abrogates Abeta(1—42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer’s disease. J Nutr Biochem. 2015;26:736-744.  https://doi.org/10.1016/j.jnutbio.2015.01.012
  32. Choi JY, Yeo IJ, Kim KC, et al. K284—6111 prevents the amyloid beta-induced neuroinflammation and impairment of recognition memory through inhibition of NF-kappaB-mediated CHI3L1 expression. J Neuroinflammation. 2018;15:224.  https://doi.org/10.1186/s12974-018-1269-3
  33. Niu TT, Yin H, Xu BL, et al. Protective Effects of Ginkgolide on a Cellular Model of Alzheimer’s Disease via Suppression of the NF-κ B Signaling Pathway. Appl Biochem Biotechnol. 2022;194(6):2448-2464. https://doi.org/10.1007/s12010-022-03828-5
  34. Nielsen HM, Veerhuis R, Holmqvist BO, et al. Binding and uptake of Aβ1‐42 by primary human astrocytes in vitro. Glia. 2009;57(9):978-988.  https://doi.org/10.1002/glia.20822
  35. Phillips EC, Croft CL, Kurbatskaya K, et al. Astrocytes and neuroinflammation in Alzheimer’s disease. Biochem Soc Trans. 2014;42(5):1321-1325. https://doi.org/10.1042/BST20140155
  36. Tanila H. The role of BDNF in Alzheimer’s disease. Neurobiol Dis. 2017;97(Pt B):114-118.  https://doi.org/10.1016/j.nbd.2016.05.008
  37. Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci. 2009;10(12):850-860. 
  38. Koponen E, Võikar V, Riekki R, et al. Transgenic mice overexpressing the full-length neurotrophin receptor trkB exhibit increased activation of the trkB—PLCγ pathway, reduced anxiety, and facilitated learning. Mol Cell Neurosci. 2004;26(1):166-181.  https://doi.org/10.1016/j.mcn.2004.01.006
  39. Wei H, Sun T, Tian Y, et al. Ginkgolide B modulates BDNF expression in acute ischemic stroke. J Korean Neurosurg Soc. 2017;60(4):391-396.  https://doi.org/10.3340/jkns.2016.1010.018
  40. Jin K, Peel AL, Mao XO, et al. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA. 2004;101(1):343-347.  https://doi.org/10.1073/pnas.2634794100
  41. Zheng PD, Mungur R, Zhou HJ, et al. Ginkgolide B promotes the proliferation and differentiation of neural stem cells following cerebral ischemia/reperfusion injury, both in vivo and in vitro. Neural Regen Res. 2018;13(7):1204-1211. https://doi.org/10.4103/1673-5374.232476
  42. Li MY, Chang CT, Han YT, et al. Ginkgolide B promotes neuronal differentiation through the Wnt/β-catenin pathway in neural stem cells of the postnatal mammalian subventricular zone. Sci Rep. 2018;8(1):14947. https://doi.org/10.1038/s41598-018-32960-8
  43. Yin JJ, He Y, An J, et al. Dynamic balance of microglia and astrocytes involved in the remyelinating effect of ginkgolide B. Front Cell Neurosci. 2020;13:572.  https://doi.org/10.3389/fncel.2019.00572
  44. Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimer’s & Dementia. 2016;12(6):719-732.  https://doi.org/10.1016/j.jalz.2016.02.010
  45. Yang Z, Liu B, Yang LE. Platycodigenin as Potential Drug Candidate for Alzheimer’s Disease via Modulating Microglial Polarization and Neurite Regeneration. Molecules. 2019;24(18):3207. https://doi.org/10.3390/molecules24183207
  46. Malashenkova IK, Hailov NA, Krynskiy SA, et al. Levels of proinflammatory cytokines and vascular endothelial growth factor in patients with Alzheimer’s disease and mild cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2016;116(3):39-43. (In Russ.). https://doi.org/10.17116/jnevro20161163139-43
  47. Spangenberg EE, Green KN. Inflammation in Alzheimer’s disease: Lessons learned from microglia-depletion models. Brain Behav Immun. 2017;61:1-11.  https://doi.org/10.1016/j.bbi.2016.07.003
  48. Hamelin L, Lagarde J, Dorothee G, et al. It Clinical Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18F-DPA-714 PET imaging. Brain. 2016;139(Pt 4):1252-1264. https://doi.org/10.1093/brain/aww017
  49. Chen A, Xu Y, Yuan J. Ginkgolide B ameliorates NLRP3 inflammasome activation after hypoxic-ischemic brain injury in the neonatal male rat. Int J Dev Neurosci. 2018;69:106-111.  https://doi.org/10.1016/j.ijdevneu.2018.07.004
  50. Feng YS, Tan ZX, Wu LY, et al. The involvement of NLRP3 infammasome in the treatment of Alzheimer’s disease. Ageing Res Rev. 2020;64:101192. https://doi.org/10.1016/j.arr.2020.101192
  51. Venegas C, Kumar S, Franklin BS, et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature. 2017;552(7685):355-361.  https://doi.org/10.1038/nature25158
  52. Shao L, Dong C, Geng D, et al. Ginkgolide B inactivates the NLRP3 inflammasome by promoting autophagic degradation to improve learning and memory impairment in Alzheimer’s disease. Metab Brain Dis. 2022;37(2):329-341.  https://doi.org/10.1007/s11011-021-00886-2
  53. Thibault O, Gant JC, Landfield PW. Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging cell. 2007;6(3):307-317.  https://doi.org/10.1111/j.1474-9726.2007.00295.x
  54. Wang SJ, Chen HH. Ginkgolide B, a constituent of Ginkgo biloba, facilitates glutamate exocytosis from rat hippocampal nerve terminals. Eur J Pharmacol. 2005;514(2-3):141-149.  https://doi.org/10.1016/j.ejphar.2005.03.027
  55. Shao L, Dong C, Geng D, et al. Ginkgolide B protects against cognitive impairment in senescence-accelerated P8 mice by mitigating oxidative stress, inflammation and ferroptosis. Biochem Biophys Res Commun. 2021;572:7-14.  https://doi.org/10.1016/j.bbrc.2021.07.081
  56. Liu J, Ye T, Zhang Y, et al. Protective effect of Ginkgolide B against cognitive impairment in mice via regulation of gut microbiota. J Agric Food Chem. 2021;69(41):12230-12240. https://doi.org/10.1021/acs.jafc.1c05038
  57. Bermon S, Petriz B, Kajeniene A, et al. The microbiota: an exercise immunology perspective. Exerc Immunol Rev. 2015;21:70-79. 
  58. Sherwin E, Dinan TG, Cryan JF. Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann NY Acad Sci. 2018;1420(1):5-25.  https://doi.org/10.1111/nyas.13416
  59. Janeiro MH, Ramírez MJ, Solas M. Dysbiosis and Alzheimer’s disease: cause or treatment opportunity? Cell Mol Neurobiol. 2022;42(2):377-387.  https://doi.org/10.1007/s10571-020-01024-9
  60. Bonfili L, Cecarini V, Cuccioloni M, et al. SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol Neurobiol. 2018;55(10):7987-8000. https://doi.org/10.1007/s12035-018-0973-4

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.