The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Pozdnyakov D.I.

Pyatigorsk Medical and Pharmaceutical Institute — Branch of the Volgograd State Medical University

Vihor A.A.

Pyatigorsk Medical and Pharmaceutical Institute — Branch of the Volgograd State Medical University

Regulation of mitophagy and mitochondrial biogenesis by monocarbonyl analogues of curcumin in the cerebral cortex of rats in experimental Alzheimer’s disease

Authors:

Pozdnyakov D.I., Vihor A.A.

More about the authors

Read: 1535 times


To cite this article:

Pozdnyakov DI, Vihor AA. Regulation of mitophagy and mitochondrial biogenesis by monocarbonyl analogues of curcumin in the cerebral cortex of rats in experimental Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(9):109‑114. (In Russ.)
https://doi.org/10.17116/jnevro2024124091109

Recommended articles:
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121
Non-invasive biomarkers for early diagnosis of Alzheimer’s disease in bodily fluids. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):8-16
Cyto­kine status of patients with Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4-2):5-12
Differential diagnosis of Alzheimer’s disease and vascular cognitive diso­rders. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4-2):26-35
A comprehensive study of Alzheimer’s disease biomarkers in plasma and cere­brospinal fluid. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4-2):43-53

References:

  1. Abbott A. Conquering Alzheimer’s: a look at the therapies of the future. Nature. 2023;616(7955):26-28.  https://doi.org/10.1038/d41586-023-00954-w
  2. Jia J, Zhang Y, Shi Y, et al. A 19-Year-Old Adolescent with Probable Alzheimer’s Disease. J Alzheimers Dis. 2023;91(3):915-922.  https://doi.org/10.3233/JAD-221065
  3. Passeri E, Elkhoury K, Morsink M, et al. Alzheimer’s Disease: Treatment Strategies and Their Limitations. Int J Mol Sci. 2022;23(22):13954. https://doi.org/10.3390/ijms232213954
  4. Villain N. Therapeutic news in Alzheimer’s disease: Soon a disease-modifying therapy? Rev Neurol (Paris). 2022;178(5):437-440.  https://doi.org/10.1016/j.neurol.2022.02.456
  5. Ashleigh T, Swerdlow RH, Beal MF. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis. Alzheimers Dement. 2023;19(1):333-342.  https://doi.org/10.1002/alz.12683
  6. Mangrulkar SV, Wankhede NL, Kale MB, et al. Mitochondrial Dysfunction as a Signaling Target for Therapeutic Intervention in Major Neurodegenerative Disease. Neurotox Res. 2023;41(6):708-729.  https://doi.org/10.1007/s12640-023-00647-2
  7. Tammineni P, Ye X, Feng T, et al. Impaired retrograde transport of axonal autophagosomes contributes to autophagic stress in Alzheimer’s disease neurons. Elife. 2017;6:e21776. https://doi.org/10.7554/eLife.21776
  8. Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci. 2019;22(3):401-412.  https://doi.org/10.1038/s41593-018-0332-9
  9. Lou G, Palikaras K, Lautrup S, et al. Mitophagy and Neuroprotection. Trends Mol Med. 2020;26(1):8-20.  https://doi.org/10.1016/j.molmed.2019.07.002
  10. He W, Wang J, Jin Q, et al. Design, green synthesis, antioxidant activity screening, and evaluation of protective effect on cerebral ischemia reperfusion injury of novel monoenone monocarbonyl curcumin analogs. Bioorg Chem. 2021;114:105080. https://doi.org/10.1016/j.bioorg.2021.105080
  11. Pozdnyakov DI, Vikhor AA, Rukovitsina VM, et al. Correction of mitochondrial dysfunction with trimethoxy-substituted monocarbonyl curcumin analogues in experimental Alzheimer’s disease. Pharmacy & Pharmacology. 2023;11(6):471-481.  https://doi.org/10.19163/2307-9266-2023-11-6-471-481
  12. Kim HY, Lee DK, Chung BR, et al. Intracerebroventricular Injection of Amyloid-β Peptides in Normal Mice to Acutely Induce Alzheimer-like Cognitive Deficits. J Vis Exp. 2016;(109):53308. https://doi.org/10.3791/53308
  13. Connolly NMC, Theurey P, Adam-Vizi V, et al. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ. 2018;25(3):542-572.  https://doi.org/10.1038/s41418-017-0020-4
  14. Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393(7):547-564.  https://doi.org/10.1515/hsz-2012-0119
  15. Wang H, Huwaimel B, Verma K, et al. Synthesis and Antineoplastic Evaluation of Mitochondrial Complex II (Succinate Dehydrogenase) Inhibitors Derived from Atpenin A5. ChemMedChem. 2017;12(13):1033-1044. https://doi.org/10.1002/cmdc.201700196
  16. Li Y, D’Aurelio M, Deng JH, et al. An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J Biol Chem. 2007;282(24):17557-17562. https://doi.org/10.1074/jbc.M701056200
  17. Grassi M, Laubscher B, Pandey AV, et al. Expanding the p.(Arg85Trp) Variant-Specific Phenotype of HNF4A: Features of Glycogen Storage Disease, Liver Cirrhosis, Impaired Mitochondrial Function, and Glomerular Changes. Mol Syndromol. 2023;14(4):347-361.  https://doi.org/10.1159/000529306
  18. Fang EF. Mitophagy and NAD+ inhibit Alzheimer disease. Autophagy. 2019;15(6):1112-1114. https://doi.org/10.1080/15548627.2019.1596497
  19. Moustapha A, Pérétout PA, Rainey NE, et al. Curcumin induces crosstalk between autophagy and apoptosis mediated by calcium release from the endoplasmic reticulum, lysosomal destabilization and mitochondrial events. Cell Death Discov. 2015;1:15017. https://doi.org/10.1038/cddiscovery.2015.17
  20. Cao S, Wang C, Yan J, et al. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting Parkin dependent mitophagy through AMPK-TFEB signal pathway. Free Radic Biol Med. 2020;147:8-22.  https://doi.org/10.1016/j.freeradbiomed.2019.12.004
  21. Song C, Li M, Xu L, et al. Mitochondrial biogenesis mediated by melatonin in an APPswe/PS1dE9 transgenic mice model. Neuroreport. 2018;29(18):1517-1524. https://doi.org/10.1097/WNR.0000000000001139
  22. Peng K, Tao Y, Zhang J, et al. Resveratrol Regulates Mitochondrial Biogenesis and Fission/Fusion to Attenuate Rotenone-Induced Neurotoxicity. Oxid Med Cell Longev. 2016;2016:6705621. https://doi.org/10.1155/2016/6705621
  23. Yerra VG, Kalvala AK, Sherkhane B, et al. Adenosine monophosphate-activated protein kinase modulation by berberine attenuates mitochondrial deficits and redox imbalance in experimental diabetic neuropathy. Neuropharmacology. 2018;131:256-270.  https://doi.org/10.1016/j.neuropharm.2017.12.029
  24. Kotha RR, Luthria DL. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules. 2019;24(16):2930. https://doi.org/10.3390/molecules24162930
  25. Wang J, Guo X, Lu W, et al. Donepezil Combined with DL-3-n-Butylphthalide Delays Cognitive Decline in Patients with Mild to Moderate Alzheimer’s Disease: A Multicenter, Prospective Cohort Study. J Alzheimers Dis. 2021;80(2):673-681.  https://doi.org/10.3233/JAD-201381

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.