The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Skripchenko N.V.

Pediatric Research and Clinical Center for Infectious Diseases;
Saint Petersburg State Pediatric Medical University

Alekseeva L.A.

Pediatric Research and Clinical Center for Infectious Diseases

Zheleznikova G.F.

Pediatric Research and Clinical Center for Infectious Diseases

Skripchenko E.Yu.

Pediatric Research and Clinical Center for Infectious Diseases;
Saint Petersburg State Pediatric Medical University

Bessonova T.V.

Pediatric Research and Clinical Center for Infectious Diseases

Zhirkov A.A.

Pediatric Research and Clinical Center for Infectious Diseases

Factors of the hemostasis system as biomarkers of severe course of acute viral infections

Authors:

Skripchenko N.V., Alekseeva L.A., Zheleznikova G.F., Skripchenko E.Yu., Bessonova T.V., Zhirkov A.A.

More about the authors

Read: 1656 times


To cite this article:

Skripchenko NV, Alekseeva LA, Zheleznikova GF, Skripchenko EYu, Bessonova TV, Zhirkov AA. Factors of the hemostasis system as biomarkers of severe course of acute viral infections. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(3):63‑74. (In Russ.)
https://doi.org/10.17116/jnevro202412403163

Recommended articles:
Improving the effe­ctiveness of treatment of patients with post-stroke apha­sia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(10):22-28
Diagnosis of neuroinfections in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11-2):51-59
The role of drug Cyto­flavin in the correction of dysautonomia in patients with post-COVID syndrome. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):140-146
Autoimmune diseases of central nervous system and respiratory viral infe­ctions in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):39-46
Psoriasis in pregnant women. Russian Journal of Clinical Dermatology and Vene­reology. 2024;(5):517-524
Immu­nology of the cervix in normal and pathological conditions (literature review). Russian Journal of Human Reproduction. 2024;(5):108-117
mRNA cancer vaccines: features of problems and collisions. Mole­cular Gene­tics, Microbiology and Viro­logy. 2025;(1):3-16

References:

  1. Musinov IM. Hemostasis system. Bulletin of the Russian Military Medical Academy. 2016;3(55):167-170. (In Russ.).
  2. Mereweather L, Constantinescu-Bercu A, Crawley J, et al. Platelet-neutrophil crosstalk in thrombosis. Int J Mol Sci. 2023;24(2):1266. https://doi.org/10.3390/ijms24021266
  3. Kwaan H. The role of fibrinolytic system in health and disease. Int J Mol Sci. 2022;23(9):5262. https://doi.org/10.3390/ijms23095262
  4. Kuznik BI. Cytokines and hemostasis system. III. Cytokines and fibrinolysis. Thrombosis, Hemostasis and Rheology. 2012;4(52):17-27. (In Russ.).
  5. Maleev VV, Polyakova AM, Astrina OS, et al. Hemostasis system and endothelial status in infectious pathology. Infectious Diseases. 2009;7(1):11-15. (In Russ.).
  6. Keragala C, Medcalf R. Plasminogen: an enigmatic zymogen. Blood. 2021;137(21):2881-2889. https://doi.org/10.1182/blood.2020008951
  7. Subramaniam S, Kothari H, Bosmann M. Tissue factor in COVID-19-associated coagulopathy. Thromb Res. 2022;220:35-47.  https://doi.org/10.1016/j.thromres.2022.09.025
  8. Yatsenko T, Skrypnyk M, Troyanovska O, et al. The role of the plasminogen/plasmin system in inflammation of the oral cavity. Cells. 2023;12(3):445.  https://doi.org/10.3390/cells12030445
  9. Krenzlin H, Lorenz V, Danckwardt S, et al. The impor-tance of thrombin in cerebral injury and disease. Int J Mol Sci. 2016;17(1):84.  https://doi.org/10.3390/ijms17010084
  10. Draxler D, Medcalf R. The fibrinolytic system — more than fibrinolysis? Transfus Med Rev. 2015;29(2):102-109.  https://doi.org/10.1016/j.tmrv.2014.09.006
  11. Semiz S. COVID-19 biomarkers: What did we learn from systematic reviews? Front Cell Infect Microbiol. 2022;12:1038908. https://doi.org/10.3389/fcimb.2022.1038908
  12. Goeijenbier M, van Wissen M, van de Weg C, et al. Review: Viral infections and mechanisms of thrombosis and bleeding. J Med Virol. 2012;84(10):1680-1696. https://doi.org/10.1002/jmv.23354
  13. Antoniak S, Mackman N. Multiple roles of the coagulation protease cascade during virus infection. Blood. 2014;123(17):2605-2613. https://doi.org/10.1182/blood-2013-09-526277
  14. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13(1):34-45.  https://doi.org/10.1038/nri3345
  15. Kuznik BI. Cytokines and hemostasis system II. Coagulation hemostasis. Thrombosis, Hemostasis and Rheology. 2012;3(51):9-29. (In Russ.).
  16. Vilnits AA, Skripchenko NV, Gorelik EYu, et al. Possibilities of optimizing pathogenetic therapy for purulent meningitis in children. Zhurnal Neurologii i Psychiatrii im. S.S. Korsakov. 2019;119(12):46-50. (In Russ.). https://doi.org/10.17116/jnevro201911912146
  17. Skripchenko NV, Ivanova GP, Govorova LV, et al. The efficacy of cytoflavin in the therapy of disseminated encephalomyelitis in children. In: Proceedings of the International Congress dedicated to World Stroke Day. Congress materials. 2017:658-659. (In Russ.).
  18. Shlobin N, Har-Even M, Itsekson-Hayosh Z, et al. Role of thrombin in central nervous system injury and disease. Biomolecules. 2021;11(4):562.  https://doi.org/10.3390/biom11040562
  19. Berkowitz S, Chapman J, Dori A, et al. Complement and coagulation system crosstalk in synaptic and neural conduction in the central and peripheral nervous systems. Biomedicines. 2021;9(12):1950. https://doi.org/10.3390/biomedicines9121950
  20. Rawish E, Nording H, Münte T, Langer H. Platelets as mediators of neuroinflammation and thrombosis. Front Immunol. 2020;11:548631. https://doi.org/10.3389/fimmu.2020.548631
  21. Yang Y, Tang H. Aberrant coagulation causes a hyper-inflammatory response in severe influenza pneumonia. Cell Mol Immunol. 2016;13(4):432-442.  https://doi.org/10.1038/cmi.2016.1
  22. Berri F, Le V, Jandrot-Perrus M, et al. Switch from protective to adverse inflammation during influenza: viral determinants and hemostasis are caught as culprits. Cell Mol Life Sci. 2014;71(5):885-898.  https://doi.org/10.1007/s00018-013-1479-x
  23. Ning J, Guan X, Li X. Case of acquired thrombotic thrombocytopenic purpura associated with influenza A (H1N1) virus and literature review. J Paediatr Child Health. 2021;57:282-285.  https://doi.org/10.1111/jpc.14846
  24. Wang Z, Su F, Lin X, et al. Serum D-dimer changes and prognostic implication in 2009 novel influenza A(H1N1). Thromb Res. 2011;127(3):198-201.  https://doi.org/10.1016/j.thromres.2010.11.032
  25. Davey R, Lynfield R, Dwyer D, et al. The association between serum biomarkers and disease outcome in influenza A(H1N1)pdm09 virus infection: results of two international observational cohort studies. PLoS One. 2013;8(2):e57121. https://doi.org/10.1371/journal.pone.0057121
  26. Rondina M, Tatsumi K, Bastarache J, Mackman N. Microvesicle tissue factor activity and interleukin-8 levels are associated with mortality in patients with influenza A/H1N1 infection. Crit Care Med. 2016;44(7):e574-e578. https://doi.org/10.1097/CCM.0000000000001584
  27. Lu S, Li T, Xi X, et al. Prognosis of 18 H7N9 avian influenza patients in Shanghai. PLoS One. 2014;9(4):e88728. https://doi.org/10.1371/journal.pone.0088728
  28. Zhang A, Huang Y, Tian D, et al. Kinetics of serological responses in influenza A(H7N9)-infected patients correlate with clinical outcome in China, 2013. Euro Surveill. 2013;18(50):20657. https://doi.org/10.2807/1560-7917.es2013.18.50.20657
  29. Bai Y, Guo Y, Gu L. Additional risk factors improve mortality prediction for patients hospitalized with influenza pneumonia: a retrospective, single-center case-control study. BMC Pulm Med. 2023;23(1):19.  https://doi.org/10.1186/s12890-022-02283-6
  30. Chuansumrit A, Chaiyaratana W. Hemostatic derangement in dengue hemorrhagic fever. Thromb Res. 2014;133(1):10-16.  https://doi.org/10.1016/j.thromres.2013.09.028
  31. Chuang Y, Lin Y, Liu C, et al. Factors contributing to the disturbance of coagulation and fibrinolysis in dengue virus infection. J Formos Med Assoc. 2013;112(1):12-17.  https://doi.org/10.1016/j.jfma.2012.10.013
  32. Wan S, Lin C, Yeh T, et al. Autoimmunity in dengue pathogenesis. J Formos Med Assoc. 2013;112(1):3-11.  https://doi.org/10.1016/j.jfma.2012.11.006
  33. Huy N, Giang T, Thuy D, et al. Factors associated with dengue shock syndrome: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2013;7(9):e2412. https://doi.org/10.1371/journal.pntd.0002412
  34. Sosothikul D, Seksarn P, Pongsewalak S, et al. Activation of endothelial cells, coagulation and fibrinolysis in children with Dengue virus infection. Thromb Haemost. 2007;97(4):627-634.  https://doi.org/10.1160/th06-02-0094
  35. Butthep P, Chunhakan S, Tangnararatchakit K, et al. Elevated soluble thrombomodulin in the febrile stage related to patients at risk for dengue shock syndrome. Pediatr Infect Dis J. 2006;25(10):894-897.  https://doi.org/10.1097/01.inf.0000237918.85330.b9
  36. De Azeredo E, Solórzano V, de Oliveira D, et al. Increased circulating procoagulant and anticoagulant factors as TF and TFPI according to severity or infecting serotypes in human dengue infection. Microbes Infect. 2017;19(1):62-68.  https://doi.org/10.1016/j.micinf.2016.08.005
  37. Solórzano V, da Costa Faria N, Dos Santos C, et al. Different profiles of cytokines, chemokines and coagulation mediators associated with severity in Brazilian patients infected with dengue virus. Viruses. 2021;13(9):1789. https://doi.org/10.3390/v13091789
  38. Van de Weg C, Huits R, Pannuti C, et al. Hyperferritinaemia in dengue virus infected patients is associated with immune activation and coagulation disturbances. PLoS Negl Trop Dis. 2014;8(10):e3214. https://doi.org/10.1371/journal.pntd.0003214
  39. Koehler F, Di Cristanziano V, Späth M, et al. The kidney in hantavirus infection — epidemiology, virology, pathophysiology, clinical presentation, diagnosis and management. Clin Kidney J. 2022;15(7):1231-1252. https://doi.org/10.1093/ckj/sfac008
  40. Sehgal A, Mehta S, Sahay K, et al. Hemorrhagic fever with renal syndrome in Asia: history, pathogenesis, diagnosis, treatment, and prevention. Viruses. 2023;15(2):561.  https://doi.org/10.3390/v15020561
  41. Tkachenko E, Ishmukhametov A, Dzagurova T, et al. Hemorrhagic Fever with Renal Syndrome. Emerg Infect Dis. 2019;25:2325-2328. https://doi.org/10.3201/eid2512.181649
  42. Baygildina AA, Lebedeva AI. Ultrastructural changes in the endothelium of vessels of various organs and regulatory factors of fibrinolysis in the complicated course of hemorrhagic fever with renal syndrome. Medical Bulletin of Bashkortostan. 2010;5(6):54-59. (In Russ.).
  43. Schmedes C, Grover S, Hisada Y, et al. Circulating Extracellular Vesicle Tissue Factor Activity During Orthohantavirus Infection Is Associated With Intravascular Coagulation. J Infect Dis. 2020;222(8):1392-1399. https://doi.org/10.1093/infdis/jiz597
  44. Dmitriev AS, Abdulova GR, Valishin DA. Dynamics of soluble thrombomodulin concentration in patients with hemorrhagic fever with renal syndrome. Far Eastern Journal of Infectious Pathology. 2010;16(16):118-122. (In Russ.).
  45. Mukhetdinova GA, Fazlyeva RM, Valishin DA, et al. Thrombocytopenia and endothelial dysfunction in hemorrhagic fever with renal syndrome. Journal of Infectology. 2018;10(4):48-52. (In Russ.). https://doi.org/10.22625/2072-6732-2018-10-4-48-52
  46. Laine O, Makela S, Mustonen J, et al. Enhanced thrombin formation and fibrinolysis during acute Puumala hantavirus infection. Thromb Res. 2010;126:154-158.  https://doi.org/10.1016/j.thromres.2010.05.025
  47. Murzabaeva RT, Valishin DA, Kutluguzhina FG. Interactions between the hemostasis system and pro-inflammatory cytokines in hemorrhagic fever with renal syndrome. International Academic Bulletin. 2016;2(14):12-16. (In Russ).
  48. Outinen T, Tervo L, Mäkelä S, et al. Plasma levels of soluble urokinase-type plasminogen activator receptor associate with the clinical severity of acute Puumala hantavirus infection. PLoS One. 2013;8(8):e71335. https://doi.org/10.1371/journal.pone.0071335
  49. Lee GY, Kim WK, No J, et al. Clinical and immunological predictors of hemorrhagic fever with renal syndrome outcome during the early phase. Viruses. 2022;14(3):595.  https://doi.org/10.3390/v14030595
  50. Sudhini Y, Wei C, Reiser J. suPAR: An inflammatory mediator for kidneys. Kidney Dis (Basel). 2022;8(4):265-274.  https://doi.org/10.1159/000524965
  51. Che L, Wang Z, Du N, et al. Evaluation of serum ferritin, procalcitonin, and C-reactive protein for the prediction of severity and mortality in hemorrhagic fever with renal syndrome. Front Microbiol. 2022;13:865233. https://doi.org/10.3389/fmicb.2022.865233
  52. Zerangian N, Erabi G, Poudineh M, et al. Venous thromboembolism in viral diseases: A comprehensive literature review. Health Sci Rep. 2023;6(2):e1085. https://doi.org/10.1002/hsr2.1085
  53. Sherman S, Eytan O, Justo D. Thrombosis associated with acute cytomegalovirus infection: a narrative review. Arch Med Sci AMS. 2014;10(6):1186-1190. https://doi.org/10.5114/aoms.2014.47828
  54. Rietveld I, Lijfering W, le Cessie S, et al. High levels of coagulation factors and venous thrombosis risk: strongest association for factor VIII and von Willebrand factor. J Thromb Haemost. 2019;17(1):99-109.  https://doi.org/10.1111/jth.14343
  55. Ferrara M, Bertocco F, Ferrara D, et al. Thrombophilia and varicella zoster in children. Hematology. 2013;18(2):119-122.  https://doi.org/10.1179/1607845412Y.0000000055
  56. Alamlih L, Abdulgayoom M, Menik Arachchige S, et al. Chronic headache and cerebral venous sinus thrombosis due to varicella zoster virus infection: a case report and review of the literature. Am J Case Rep. 2021;22:e927699‐1.  https://doi.org/10.12659/AJCR.927699
  57. Theron A, Ayadi S, Boissier E, et al. Post-viral idiopathic purpura fulminans is associated with inherited thrombophilia and anti-cardiolipin antibodies. Front Pediatr. 2023;11:1197795. https://doi.org/10.3389/fped.2023.1197795
  58. Egorova ES, Skripchenko NV, Vilnits AA, et al. Comparative analysis of hemostasis disorders in bacterial and viral neuroinfections in children. Children’s Infections. 2020;19(2):5-13. (In Russ.). https://doi.org/10.22627/2072-8107-2020-19-2-5-13
  59. Hauer L, Pikija S, Schulte E, et al. Cerebrovascular manifestations of herpes simplex virus infection of the central nervous system: a systematic review. J Neuroinflammation. 2019;16(1):19-23.  https://doi.org/10.1186/s12974-019-1409-4
  60. Ben-Chetrit E, Wiener-Well Y, Fadeela A, Wolf D. Antiphospholipid antibodies during infectious mononucleosis and their long term clinical significance. J Clin Virol. 2013;56:312-315.  https://doi.org/10.1016/j.jcv.2012.12.011
  61. Zhdanov KV, Kovalenko AN, Chirsky VS, et al. Analysis of lethal outcomes of meningococcal infection in adults. Therapeutic Archive. 2022;94(11):1252-1256. (In Russ.).
  62. Fisun AYa, Zhdanov KV, Zakharenko SM, Kovalenko AN. Disease caused by the Ebola virus: clinical and diagnostic aspects and organization of treatment and preventive measures. Journal of Infectology. 2018;10(4):6-13. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.