The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Fedin A.I.

Pirogov Russian National Research Medical University

Neurological disorders in the postcovid period

Authors:

Fedin A.I.

More about the authors

Read: 3304 times


To cite this article:

Fedin AI. Neurological disorders in the postcovid period. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(10):31‑37. (In Russ.)
https://doi.org/10.17116/jnevro202212210131

Recommended articles:
Cognitive impairment in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):81-90
The role of drug Cyto­flavin in the correction of dysautonomia in patients with post-COVID syndrome. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):140-146
Unre­solved problem: Chemotherapy-Induced Peri­pheral Neuropathy. P.A. Herzen Journal of Onco­logy. 2024;(5):76-81
Psoriasis in pregnant women. Russian Journal of Clinical Dermatology and Vene­reology. 2024;(5):517-524
Tube­rculous otitis media in an adolescent. Clinical case. Russian Bulletin of Otorhinolaryngology. 2024;(5):63-66
Modern view on the etiology of gallstone disease in children. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):59-68

References:

  1. COVID-19 Excess Mortality Collaborators. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020-21. Lancet. 2022;399:1513-1536. https://doi.org/10.1016/S0140-6736(21)02796-3
  2. Greenhalgh T, Knigh M, A’Court C, et al. Management of post-acute COVID-19 in primary care. BMJ. 2020;370:m3026. https://doi.org/10.1136/bmj.m3026
  3. Amenta E, Spallone A, Rodriguez-Barradas M, et al. Postacute COVID-19: An Overview and Approach to Classification. Open Forum Infectious Diseases. 2020. Review of Postacute COVID-19. 2020;7(12):ofaa509. https://doi:10.1093/ofid/ofaa509
  4. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nature Medicine. 2021;27(4):601-615.  https://doi.org/10.1038/s41591-021-01283-z
  5. Majersik J, Reddy V. Acute neurology during tye COVID-19 pandemic: Supporting the front line. Neurology. 2020;94(24):1055-1057. https://doi.org/10.1212/WNL.0000000000009564
  6. Fedin AI. Neurological clinical pathology associated with COVID-19. News of Neurology. 2020;4(66):2-5. (In Russ.).
  7. Fedin AI. Neurological clinical pathology associated with COVID-19. Neurology and Neurosurgery. Eastern Europe. 2020;10(2):312-329. (In Russ.). https://doi.org/10.34883/PI.2020.2.2.024
  8. Chou S, Beghi E, Helbok R, et al. GCS-NeuroCOVID Consortium and ENERGY Consortium. Global Incidence of Neurological Manifestations Among Patients Hospitalized With COVID-19-A Report for the GCS-NeuroCOVID Consortium and the ENERGY Consortium. JAMA. Network Open. 2021;4(5):e2112131. https://doi.org/10.1001/jamanetworkopen.2021.12131
  9. Davis E, Assaf G, McCorkell L, et al. Characterizing long COVID in international cohort: 7 months of symptoms and their impact. Lancet Discovery Sci. 2021;38(7):101019. https://doi.org/10.1016/j.eclinm.2021.101019
  10. Graham E, Clark J, Orban Z, et al. Persistent neurological manifestations in long COVID-19 syndrome: A systematic review and meta-analysis. J Infect Publ Health. 2022;15(8):856-869.  https://doi.org/10.1002/acn3.51350
  11. Martelletti P, Bentivegna E, Luciani M, et al. Headache as a prognostic factor for COVID-19. Time to re-evaluate. SN Compr Clin Med. 2020;2(12):2509-2510. https://doi.org/10.1007/s42399-020-00657-7
  12. López J, García-Azorín D, Planchuelo-Gómez Á, et al. Phenotypic characterization of acute headache attributed to SARS-CoV-2: An ICHD-3 validation study on 106 hospitalized patients. Cephalalgia. 2020;40(13):1432-1442. https://doi.org/10.1177/0333102420965146
  13. Di Stadio A, Brenner M, De Luca P, et al. Olfactory dysfunction, headache, and mental clouding in adults with Long-COVID-19: what is the link between cognition and olfaction? A Cross-Sectional Study. Brain Sci. 2022;12(2):154.  https://doi.org/10.3390/brainsci12020154
  14. Lechien J, Chiesa-Estomba C, De Stati D, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020;277(6):2251-2261. https://doi.org/10.1007/s00405-020-05965-1
  15. Tan B, Han R, Zhao J, et al. Prognosis and persistence of smell and taste dysfunction in patients with covid-19: meta-analysis with parametric cure modelling of recovery curves. BMJ. 2022;378:o1939. https://doi.org/10.1136/bmj-2021-069503
  16. Vorobyova OV. The versatility of the phenomenon of asthenia. Rus Med J. 2012;5:248-252. (In Russ.).
  17. Townsend L, Iam D, Adam H, et al. Persistent fatigue following SARS-CoV-2  infection is common and independent of severity of initial infection. PLoS One. 2020;15:e0240784. https://doi.org/10.1371/journal.pone.0240784
  18. Sandler C,Vegard B, Willer R, et al. Long COVID and post-infective fatigue syndrome: A review. Open Forum Infect. Dis. 2021;8:440-444.  https://doi.org/10.1093/ofid/ofab440
  19. Sperling S, Andreas F, Steffen L, et al. Fatigue is a major symptom at COVID-19 hospitalization follow-up. J Clin Med. 2022;11(9):2411. https://doi.org/10.3390/jcm11092411
  20. Al-Aly Z, Xie J, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259-264.  https://doi.org/10.1038/s41586-021-03553-9
  21. Shishkova VN. Fatigue in neurological and general therapeutic practice. Consilium Medicum. 2020;22(9):65-67. (In Russ.). https://doi.org/10.26442/20751753.2020.9.200343
  22. Sotzny F, Blanco J, Capelli E, et al. European Network on ME/CFS (EUROMENE). Myalgic Encephalomyelitis/Chronic Fatigue Syndrome — Evidence for an autoimmune disease. Autoimmun Rev. 2018;17(6):601-609.  https://doi.org/10.1016/j.autrev.2018.01.009
  23. Altuna M, Sánchez-Saudinós M, Lleó L. Cognitive symptoms after COVID-19. Neurol Persp. 2021;1(1):16-24.  https://doi.org/10.1016/j.neurop.2021.10.005
  24. Garrigues E, Janvier, Kherabi J, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect. 2020;81:4-6.  https://doi.org/10.1016/j.jinf.2020.08.029
  25. Premraj L, Kannapadi N, Briggs J, et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J Neurol Sci. 2022;434:120162. https://doi.org/10.1016/j.jns.2022.120162
  26. Fernández-de-Las-Peñas C, Gómez-Mayordomo V, de-la-Llave-Rincón AI, et al. Anxiety, depression and poor sleep quality as long-term post-COVID sequela in previously hospitalized patients: A multicenter study. J Infect. 2021;83(7):496-522.  https://doi.org/10.1016/j.jinf.2021.06.022
  27. Greenhawt M, Kimball S, DunnGalvin A, et al. Media influence on anxiety, health utility, and health beliefs early in the Sars-Cov-2 pandemic — A survey study. J Gen Intern Med. 2021;36(5):1327-1337. https://doi.org/10.1007/s11606-020-06554-y
  28. Taquet M, Geddes J, Husain M, et al. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8:416-427.  https://doi.org/10.1016/S2215-0366(21)00084-5
  29. Huang L, Yao Q, Gu X, et al. 1-year outcomes in hospital survivors with COVID-19: A longitudinal cohort study. Lancet. 2021;398:747-758.  https://doi.org/10.1016/S0140-6736(21)01755-4
  30. Shanbehzadeh S, Tavahomi M, Zanjari N, et al. Physical and mental health complications post-COVID-19: Scoping review. J Psychosom Res. 2021;147:110525. https://doi.org/10.1016/j.jpsychores.2021.110525
  31. Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet. 2021;397:220-232.  https://doi.org/10.1016/S0140-6736(20)32656-8
  32. Alghamdi H, Alrashed A, Jawhari A, Abdel-Moneim A. Neuropsychiatric symptoms in post-COVID-19 long haulers. Acta Neuropsychiatrica. 2022;May 11:1-12.  https://doi.org/10.1017/neu.2022.13
  33. Adnan J, Saleemi H, Shafqat A, et al. Tendency of post COVID muscle and joint pains. Med Forum Mon. 2021;32(4):161-163.  https://doi.org/10.2147/JPR.S365026
  34. Wahlgren C, Divanoglou A, Larsson M, et al. Rehabilitation needs following COVID-19: five-month post-discharge clinical follow-up of individuals with concerning self-reported symptoms. EClin Med. 2022;43:1-14.  https://doi.org/10.1016/j.eclinm.2021.101219
  35. Karaarslan F, Güneri F, Kardeş S. Long COVID: rheumatologic/musculoskeletal symptoms in hospitalized COVID-19 survivors at 3 and 6 months. Clin Rheumatol. 2022;41(1):289-296.  https://doi.org/10.1007/s10067-021-05942-x
  36. Leite V, Rampim D, Jorge V, et al. Persistent symptoms and disability after COVID-19 hospitalization: data from a comprehensive telerehabilitation program. Arch Phys Med Rehabil. 2021;102(7):1308-1316. https://doi.org/10.1016/j.apmr.2021.03.001
  37. Chadda K, Blakey E, Huang CL-H. Long COVID-19 and Postural Orthostatic Tachycardia Syndrome — Is Dysautonomia to Be Blamed? Front Cardiovasc Med. 2022;9:860198. https://doi.org/10.3389/fcvm.2022.860198
  38. Dani M, Dirksen A, Taraborrelli P, et al. Autonomic dysfunction in ‘long COVID’: rationale, physiology and management strategies. Clin Med (Lond). 2021;21(1):63-67.  https://doi.org/10.7861/clinmed.2020-0896
  39. Shouman K. Autonomic dysfunction following COVID-19 infection: An early experience. Clin Auton Res. 2021;31:385-394.  https://doi.org/10.1007/s10286-021-00803-8
  40. Stahlberg M, Reistam U, Fedorowski A, et al. Post-COVID-19 tachycardia syndrome: A distinct phenotype of post-acute COVID-19 syndrome. Am J Med. 2021;134:1451-1456. https://doi.org/10.1016/j.amjmed.2021.07.004
  41. Luria AR. Higher cortical functions of a person and their disorders in local brain lesions. M.: Academic Project; 2000:512. (In Russ.).
  42. Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022;604:697-707.  https://doi.org/10.1038/s41586-022-04569-5
  43. Najt P, Helen L, Richards H, Fortune D. Brain imaging in patients with COVID-19: A systematic review. Brain Behav Immun Health. 2021;16:100290. https://doi.org/10.1016/j.bbih.2021.100290
  44. Needham E, Chou S, Coles A. et al. Neurological Implications of COVID-19 Infections. Neurocrit Care. 2020;32(3):667-671.  https://doi.org/10.1007/s12028-020-00978-4
  45. Agyeman A, Lee Chin K, Landersdorfer C, et al. Smell and taste dysfunction in patients with COVID-19: A systematic review and meta-analysis. Mayo Clin Proc. 2020;95(8):1621-1631. https://doi.org/10.1016/j.mayocp.2020.05.030
  46. Zhang J, Tecson K, McCullough P. Endothelial dysfunction contributes to COVID-19-associated inflammation and coagulopathy. Rev Cardiovasc Med. 2020;21(3):315-319.  https://doi.org/10.31083/j.rcm.2020.03.126
  47. Henri D, Pierre-Yves R. The circumventricular organs: An atlas of comparative anatomy and vascularization. Brain Res Rev. 2007;56:119-147.  https://doi.org/10.1016/j.brainresrev.2007.06.002
  48. Neurobiology of Body Fluid Homeostasis: Transduction and Integration. Chapter 2. Circumventricular Organs. De Luca L, Menani J, Johnson A, eds. CRC Press/Taylor & Francis; 2014.
  49. Cottrell GT, Ferguson AV. Sensory circumventricular organs: Central roles in integrated autonomic regulation. Reg Pept. 2004;117(1):11-23.  https://doi.org/10.1016/j.regpep.2003.09.004
  50. Pikalyuk VS, Korsunskaya LL, Romensky AO, Shaimardanova LR. The circumventricular system as a “gateway” to the brain. Tauride Medico-Biological Bulletin. 2013;61(1):270-275. (In Russ.).
  51. Jeong J, Dow S, Young C. Sensory Circumventricular Organs, Neuroendocrine Control, and Metabolic Regulation. Metabolites. 2021;11(8):494-499.  https://doi.org/10.3390/metabo11080494
  52. Stefanou M, Palaiodimou L, Bakola E, et al. Neurological manifestations of long-COVID syndrome: a narrative review. Ther Adv Chronic Dis. 2022;13:1-21.  https://doi.org/10.1177/20406223221076890
  53. Petrov VI. Basic principles and methodology of evidence-based medicine. Bulletin of VolgSMU. 2011;38(2):3-7. 
  54. Fedin AI, Saverskaya EN, Badalyan KR. Multimodal therapeutic strategies in the treatment of cerebrovascular disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(12):1-7. (In Russ.). https://doi.org/10.17116/jnevro2021121121112
  55. Nesterenko AN, Onufriev MV, Gulyaeva NV, et al. The effect of Cortexin on free radical oxidation and inflammatory processes in rats with normal and accelerated aging. Neurochemistry. 2018;2(35):187-198. (In Russ.). https://doi.org/10.7868/S1027813318020127
  56. Yakovlev AA, Gulyaeva NV. Molecular partners of Cortexin in the brain. Neurochemistry. 2017;33:1:91-96. (In Russ.). https://doi.org/10.1134/S1819712416040164
  57. Ludewig P, Winneberger J, Magnus T. The cerebral endothelial cell as a key regulator of inflammatory processes in sterile inflammation. J Neuroimmunol. 2019;326:38-44.  https://doi.org/10.1016/j.jneuroim.2018.10.012
  58. Kurkin D, Bakulin D, Morkovin E. et al. Neuroprotective action of Cortexin, Cerebrolysin and Actovegin in acute or chronic brain ischemia in rats. PLoS One. 2021;16(7):E0254493. https://doi.org/10.1371/journal.pone.0254493
  59. Putilina MV, Mutovina ZYu, Kurushina OV, et al. Determination of the prevalence of postcovid syndrome and assessment of the effectiveness of the drug Cortexin in the treatment of neurological disorders in patients with postcovid syndrome. Results of the multicenter clinical and epidemiological observational program CORTEX. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(1):84-90. (In Russ.). https://doi.org/10.17116/jnevro202212201184
  60. Fedin AI, Belskaya GN, Kurushina OV, et al. Dose-dependent effects of cortexin in chronic cerebral ischemia (results of a multicenter randomized controlled study). S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(9):35-42. (In Russ.). https://doi.org/10.17116/jnevro201811809135
  61. Rosen DA, Seki SM, Fernández-Castañeda A, et al. Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci Transl Med. 2019;11(478):eaau5266.
  62. Guitart X, Codony X, Monroy X. Sigma receptors: biology and therapeutic potential. Psychopharmacology (Berl). 2004;174:301-319. 
  63. Vorobyova OV. Neuropharmacological potential of sigma1-receptors: new therapeutic possibilities. S.S. Korsakov Journal of Neurology and Psychiatry. 2012;10(2):51-56. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.