The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Rybakova M.G.

Academician I.P. Pavlov First St. Petersburg State Medical University

Myurzep A.E.

Academician I.P. Pavlov First St. Petersburg State Medical University

Pathogenesis of pulmonary fibrosis

Authors:

Rybakova M.G., Myurzep A.E.

More about the authors

Read: 2043 times


To cite this article:

Rybakova MG, Myurzep AE. Pathogenesis of pulmonary fibrosis. Russian Journal of Archive of Pathology. 2024;86(4):58‑63. (In Russ.)
https://doi.org/10.17116/patol20248604158

Recommended articles:
Diffuse changes in the brain in the acute phase of COVID-19 and after infe­ction. Russian Journal of Archive of Pathology. 2025;(1):5-15
Liver pathology in COVID-19. Russian Journal of Archive of Pathology. 2025;(1):53-59
The role of drug Cyto­flavin in the correction of dysautonomia in patients with post-COVID syndrome. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):140-146

References:

  1. Tale S, Ghosh S, Meitei SP, Kolli M, Garbhapu AK, Pudi S. Post-COVID-19 pneumonia pulmonary fibrosis. QJM. 2020;113(11): 837-838.  https://doi.org/10.1093/qjmed/hcaa255
  2. Kalchiem-Dekel O, Galvin JR, Burke AP, Atamas SP, Todd NW. Interstitial lung disease and pulmonary fibrosis: a practical approach for general medicine physicians with focus on the medical history. J Clin Med. 2018;7(12):476.  https://doi.org/10.3390/jcm7120476
  3. Ye Z, Zhang Y, Wang Y, Huang Z, Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol. 2020;30(8):4381-4389. https://doi.org/10.1007/s00330-020-06801-0
  4. George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med. 2020;8(8):807-815.  https://doi.org/10.1016/s2213-2600(20)30225-3
  5. Bösmüller H, Matter M, Fend F, Tzankov A. The pulmonary pathology of COVID-19. Virchows Arch. 2021;478(1):137-150.  https://doi.org/10.1007/s00428-021-03053-1
  6. Mauad T, Duarte-Neto A, da Silva LFF, de Oliveira EP, de Brito JM, do Nascimento ECT, de Almeida Monteiro RA, Ferreira JC, de Carvalho CRR, do Nascimento Saldiva PH, et al. Tracking the time course of pathological patterns of lung injury in severe COVID-19. Respir Res. 2021;22(1):32.  https://doi.org/10.1186/s12931-021-01628-9
  7. Cheung OY, Chan JW, Ng CK, Koo CK. The spectrum of pathological changes in severe acute respiratory syndrome (SARS). Histopathology. 2004;45(2):119-124.  https://doi.org/10.1111/j.1365-2559.2004.01926.x
  8. Fu Z, Tang N, Chen Y, Ma L, Wei Y, Lu Y, Ye K, Liu H, Tang F, Huang G, et al. CT features of COVID-19 patients with two consecutive negative RT-PCR tests after treatment. Sci Rep. 2020; 10(1):11548. https://doi.org/10.1038/s41598-020-68509-x
  9. Francone M, Iafrate F, Masci GM, Coco S, Cilia F, Manganaro L, Panebianco V, Andreoli C, Colaiacomo MC, Zingaropoli MA, et al. Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis. Eur Radiol. 2020;30(12):6808-6817. https://doi.org/10.1007/s00330-020-07033-y
  10. Vasarmidi E, Tsitoura E, Spandidos DA, Tzanakis N, Antoniou KM. Pulmonary fibrosis in the aftermath of the COVID-19 era (Review). Exp Ther Med. 2020;20(3):2557-2560. https://doi.org/10.3892/etm.2020.8980
  11. Bocchino M, Lieto R, Romano F, Sica G, Bocchini G, Muto E, Capitelli L, Sequino D, Valente T, Fiorentino G, et al. Chest CT-based assessment of 1-year outcomes after moderate COVID-19 pneumonia. Radiology. 2022;305(2):479-485.  https://doi.org/10.1148/radiol.220019
  12. Mikhaleva LM, Cherniaev AL, Samsonova MV, Zayratyants OV, Kakturskiy LV, Vasyukova OA, Birukov AE, Kontorshchikov AS, Sorokina AV, Sinelnikov MY. Pathological features in 100 deceased patients with COVID-19 in correlation with clinical and laboratory data. Pathol Oncol Res. 2021;27:1609900. https://doi.org/10.3389/pore.2021.1609900
  13. Zabozlaev FG, Kravchenko EV, Gallyamova AR, Letunovskii NN. Pulmonary pathology of the new coronavirus disease (covid-19). The preliminary analysis of post-mortem findings. Journal of Clinical Practice. 2020;11(2):21-37. (In Russ.). https://doi.org/10.17816/clinpract34849
  14. Parra-Medina R, Herrera S, Mejía J. Comments to: A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression. Mod Pathol. 2021;34(8):1608-1609. https://doi.org/10.1038/s41379-020-0631-z
  15. Shi L, Han Q, Hong Y, Li W, Gong G, Cui J, Mao M, Liang X, Hu B, Li X, et al. Inhibition of miR-199a-5p rejuvenates aged mesenchymal stem cells derived from patients with idiopathic pulmonary fibrosis and improves their therapeutic efficacy in experimental pulmonary fibrosis. Stem Cell Res Ther. 2021;12(1):147.  https://doi.org/10.1186/s13287-021-02215-x
  16. Horowitz A, Moraes C. Live long and prosper: the enterprise of understanding diseased epithelium. Integr Biol (Camb). 2015;7(5): 494-497.  https://doi.org/10.1039/c5ib90013a
  17. Akram KM, Patel N, Spiteri MA, Forsyth NR. Lung regeneration: endogenous and exogenous stem cell mediated therapeutic approaches. Int J Mol Sci. 2016;17(1):128.  https://doi.org/10.3390/ijms17010128
  18. Kuzubova IA, Lebedeva ES, Titova ON. Regenerative properties of lung epithelium. Russian Journal of Physiology. 2017;103(5):481-493. (In Russ.).
  19. Coalson JJ. The ultrastructure of human fibrosing alveolitis. Virchows Arch A Pathol Anat Histol. 1982;395(2):181-199.  https://doi.org/10.1007/bf00429611
  20. Corrin B, Jagusch M, Dewar A, Tungekar MF, Davies DR, Warner JO, Turner-Warwick M, Empey D. Fine structural changes in idiopathic pulmonary haemosiderosis. J Pathol. 1987;153(3): 249-256.  https://doi.org/10.1002/path.1711530309
  21. Kasper M, Schöbl R, Haroske G, Fischer R, Neubert F, Dimmer V, Müller M. Distribution of von Willebrand factor in capillary endothelial cells of rat lungs with pulmonary fibrosis. Exp Toxicol Pathol. 1996;48(4):283-288.  https://doi.org/10.1016/s0940-2993(96)80020-0
  22. Bogatkevich GS, Ludwicka-Bradley A, Singleton CB, Bethard JR, Silver RM. Proteomic analysis of CTGF-activated lung fibroblasts: identification of IQGAP1 as a key player in lung fibroblast migration. Am J Physiol Lung Cell Mol Physiol. 2008;295(4):L603-L611. https://doi.org/10.1152/ajplung.00530.2007
  23. Kishi M, Aono Y, Sato S, Koyama K, Azuma M, Abe S, Kawano H, Kishi J, Toyoda Y, Okazaki H, et al. Blockade of platelet-derived growth factor receptor-β, not receptor-α ameliorates bleomycin-induced pulmonary fibrosis in mice. PLoS One. 2018; 13(12):e0209786. https://doi.org/10.1371/journal.pone.0209786
  24. Ponticos M, Holmes AM, Shi-wen X, Leoni P, Khan K, Rajkumar VS, Hoyles RK, Bou-Gharios G, Black CM, Denton CP, et al. Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum. 2009;60(7):2142-2155. https://doi.org/10.1002/art.24620
  25. Phan SH. The myofibroblast in pulmonary fibrosis. Chest. 2002; 122(6 suppl):286S-289S. https://doi.org/10.1378/chest.122.6_suppl.286s
  26. MacDuff A, Arnold A, Harvey J.; BTS Pleural Disease Guideline Group. Management of spontaneous pneumothorax: British Thoracic Society Pleural Disease Guideline 2010. Thorax. 2010;65(suppl 2):ii18-ii31. https://doi.org/10.1136/thx.2010.136986
  27. Ferguson HE, Kulkarni A, Lehmann GM, Garcia-Bates TM, Thatcher TH, Huxlin KR, Phipps RP, Sime PJ. Electrophilic peroxisome proliferator-activated receptor-γ ligands have potent antifibrotic effects in human lung fibroblasts. Am J Respir Cell Mol Biol. 2009;41(6):722-730.  https://doi.org/10.1165/rcmb.2009-0006oc
  28. Kuhn C, McDonald JA. The roles of the myofibroblast in idiopathic pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol. 1991;138(5):1257-1265.
  29. Katzenstein AL, Myers JL. Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med. 1998;157(4 Pt. 1):1301-1315. https://doi.org/10.1164/ajrccm.157.4.9707039
  30. Nicholson AG, Fulford LG, Colby TG, du Bois RM, Hansell DM, Wells AU. The relationship between individual histologic features and disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2002;166(2):173-177.  https://doi.org/10.1164/rccm.2109039
  31. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349-363.  https://doi.org/10.1038/nrm809
  32. Lorena D, Uchio K, Alto Costa AM, Desmoulière A. Normal scarring: importance of myofibroblasts. Wound Repair Regen. 2002;10(2):86-92.  https://doi.org/10.1046/j.1524-475x.2002.00201.x
  33. Shahar I, Fireman E, Topilsky M, Grief J, Schwarz Y, Kivity S, Ben-Efraim S, Spirer Z. Effect of endothelin-1 on α-smooth muscle actin expression and on alveolar fibroblasts proliferation in interstitial lung diseases. Int J Immunopharmacol. 1999;21(11):759-775.  https://doi.org/10.1016/s0192-0561(99)00056-9
  34. Bogatkevich GS, Tourkina E, Silver RM, Ludwicka-Bradley A. Thrombin differentiates normal lung fibroblasts to a myofibroblast phenotype via the proteolytically activated receptor-1 and a protein kinase C-dependent pathway. J Biol Chem. 2001;276(48):45184-45192. https://doi.org/10.1074/jbc.m106441200
  35. Folkman J, D’Amore PA. Blood vessel formation: what is its molecular basis? Cell. 1996;87(7):1153-1155. https://doi.org/10.1016/s0092-8674(00)81810-3
  36. Keane MP, Belperio JA, Burdick MD, Lynch JP, Fishbein MC, Strieter RM. ENA-78 is an important angiogenic factor in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2001; 164(12):2239-2242. https://doi.org/10.1164/ajrccm.164.12.2104106
  37. Tatsuguchi A, Fukuda Y, Ishizaki M, Yamanaka N. Localization of matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 in normal human and rabbit stomachs. Digestion. 1999;60(3):246-254.  https://doi.org/10.1159/000007665
  38. Koyama S, Sato E, Haniuda M, Numanami H, Nagai S, Izumi T. Decreased level of vascular endothelial growth factor in bronchoalveolar lavage fluid of normal smokers and patients with pulmonary fibrosis. Am J Respir Crit Care Med. 2002;166(3):382-385.  https://doi.org/10.1164/rccm.2103112
  39. Lappi-Blanco E, Soini Y, Kinnula V, Pääkkö P. VEGF and bFGF are highly expressed in intraluminal fibromyxoid lesions in bronchiolitis obliterans organizing pneumonia. J Pathol. 2001;196(2): 220-227.  https://doi.org/10.1002/path.1038
  40. Kunkel SL. Th1- and Th2-type cytokines regulate chemokine expression. Biol Signals. 1996;5(4):197-202.  https://doi.org/10.1159/000109190
  41. Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, Shipley JM, Gotwals P, Noble P, Chen Q, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor β(1). J Exp Med. 2001;194(6):809-821.  https://doi.org/10.1084/jem.194.6.809
  42. Ando M, Miyazaki E, Fukami T, Kumamoto T, Tsuda T. Interleukin-4-producing cells in idiopathic pulmonary fibrosis: an immunohistochemical study. Respirology. 1999;4(4):383-391.  https://doi.org/10.1046/j.1440-1843.1999.00209.x
  43. Iwata M, Cowling RT, Gurantz D, Moore C, Zhang S, Yuan JX, Greenberg BH. Angiotensin-(1-7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects. Am J Physiol Heart Circ Physiol. 2005;289(6):H2356-H2363. https://doi.org/10.1152/ajpheart.00317.2005
  44. Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J. Transient expression of IL-1β induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest. 2001;107(12):1529-1536. https://doi.org/10.1172/jci12568
  45. Moodley YP, Scaffidi AK, Misso NL, Keerthisingam C, McAnulty RJ, Laurent GJ, Mutsaers SE, Thompson PJ, Knight DA. Fibroblasts isolated from normal lungs and those with idiopathic pulmonary fibrosis differ in interleukin-6/gp130-mediated cell signaling and proliferation. Am J Pathol. 2003;163(1):345-354.  https://doi.org/10.1016/s0002-9440(10)63658-9
  46. Moodley YP, Misso NL, Scaffidi AK, Fogel-Petrovic M, McAnulty RJ, Laurent GJ, Thompson PJ, Knight DA. Inverse effects of interleukin-6 on apoptosis of fibroblasts from pulmonary fibrosis and normal lungs. Am J Respir Cell Mol Biol. 2003;29(4):490-498.  https://doi.org/10.1165/rcmb.2002-0262oc
  47. Ng B, Dong J, D’Agostino G, Viswanathan S, Widjaja AA, Lim WW, Ko NSJ, Tan J, Chothani SP, Huang B, et al. Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci Transl Med. 2019;11(511):eaaw1237. https://doi.org/10.1126/scitranslmed.aaw1237
  48. Xu X, Luo S, Li B, Dai H, Zhang J. IL-25 contributes to lung fibrosis by directly acting on alveolar epithelial cells and fibroblasts. Exp Biol Med (Maywood). 2019;244(9):770-780.  https://doi.org/10.1177/1535370219843827
  49. Xu J, Xu X, Jiang L, Dua K, Hansbro PM, Liu G. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res. 2020;21(1):182.  https://doi.org/10.1186/s12931-020-01445-6
  50. Ziesche R, Hofbauer E, Wittmann K, Petkov V, Block LH. A preliminary study of long-term treatment with interferon gamma-1b and low-dose prednisolone in patients with idiopathic pulmonary fibrosis. New Engl J Med. 1999;341(17):1264-1269. https://doi.org/10.1056/nejm199910213411703
  51. Klee S, Lehmann M, Wagner DE, Baarsma HA, Königshoff M. WISP1 mediates IL-6-dependent proliferation in primary human lung fibroblasts. Sci Rep. 2016;6:20547. https://doi.org/10.1038/srep20547

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.