The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Nikitina N.A.

I.M. Sechenov First Moscow State Medical University — N.V. Sklifosovsky Institute of Clinical Medicine

Sidorova I.S.

I.M. Sechenov First Moscow State Medical University — N.V. Sklifosovsky Institute of Clinical Medicine

Ziganshin R.Kh.

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry

Kir’yanova M.A.

I.M. Sechenov First Moscow State Medical University — N.V. Sklifosovsky Institute of Clinical Medicine

Ageev M.B.

I.M. Sechenov First Moscow State Medical University — N.V. Sklifosovsky Institute of Clinical Medicine

Comparative analysis of the placental proteome in normal and severe preeclampsia

Authors:

Nikitina N.A., Sidorova I.S., Ziganshin R.Kh., Kir’yanova M.A., Ageev M.B.

More about the authors

Read: 175 times


To cite this article:

Nikitina NA, Sidorova IS, Ziganshin RKh, Kir’yanova MA, Ageev MB. Comparative analysis of the placental proteome in normal and severe preeclampsia. Russian Bulletin of Obstetrician-Gynecologist. 2025;25(5):5‑14. (In Russ.)
https://doi.org/10.17116/rosakush2025250515

Recommended articles:
On mole­cular gene­tic predictors of preeclampsia. Russian Bulletin of Obstetrician-Gynecologist. 2024;(6):26-34
The level of hypo­xia-induced factor-1a and asso­ciated mole­cules in preeclampsia. Russian Bulletin of Obstetrician-Gynecologist. 2025;(1):5-10
Functional cyto­kine redu­ndancy in pregnancy. Russian Journal of Human Reproduction. 2024;(6):73-80
Mole­cular mechanisms of preeclampsia. Russian Journal of Human Reproduction. 2025;(2):44-53

References:

  1. Staff AC. The two-stage placental model of preeclampsia: An update. J Reprod Immunol. 2019;134-135:1-10.  https://doi.org/10.1016/j.jri.2019.07.004
  2. Redman CWG, Staff AC, Roberts JM. Syncytiotrophoblast stress in preeclampsia: the convergence point for multiple pathways. Am J Obstet Gynecol. 2022;226:2S:S907-S927. https://doi.org/10.1016/j.ajog.2020.09.047
  3. Brosens I, Puttemans P, Benagiano G. Placental bed research: I. The placental bed: from spiral arteries remodeling to the great obstetrical syndromes. Am J Obstet Gynecol. 2019;221:5:437-456.  https://doi.org/10.1016/j.ajog.2019.05.044
  4. Schlichting LE, Insaf TZ, Zaidi AN, Lui GK, van Zutphen AR. Maternal comorbidities and complications of delivery in pregnant women with congenital heart disease. J Am Coll Cardiol. 2019;73:17:2181-2191. https://doi.org/10.1016/j.jacc.2019.01.069
  5. Hayward RM, Foster E, Tseng ZH. Maternal and fetal outcomes of admission for delivery in women with congenital heart disease. JAMA Cardiol. 2017;2:6:664-671.  https://doi.org/10.1001/jamacardio.2017.0283
  6. Foo FL, Mahendru AA, Masini G, Fraser A, Cacciatore S, MacIntyre DA, McEniery CM, Wilkinson IB, Bennett PR, Lees CC. Association between prepregnancy cardiovascular function and subsequent preeclampsia or fetal growth restriction. Hypertension. 2018;72:2:442-450.  https://doi.org/10.1161/HYPERTENSIONAHA.118.11092
  7. Manna S, McCarthy C, McCarthy FP. Placental ageing in adverse pregnancy outcomes: Telomere shortening, cell senescence, and mitochondrial dysfunction. Oxid Med Cell Longev. 2019;2019:3095383. https://doi.org/10.1155/2019/3095383
  8. Sultana Z, Maiti K, Aitken J, Morris J, Dedman L, Smith R. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. Am J Reprod Immunol. 2017;77:5.  https://doi.org/10.1111/aji.12653
  9. Khorami Sarvestani S, Shojaeian S, Vanaki N, Ghresi-Fard B, Amini M, Gilany K, Soltanghoraee H, Arefi S, Jeddi-Tehrani M, Zarnani AH. Proteome profiling of human placenta reveals developmental stage-dependent alterations in protein signature. Clin Proteomics. 2021;18:1:18.  https://doi.org/10.1186/s12014-021-09324-y
  10. Database «Kyoto Encyclopedia of Genes and Genome» (KEGG). https://www.kegg.jp/pathway/hsa04066
  11. Titova ON, Kuzubova NA, Lebedeva ES. The role of the hypoxic signaling pathway in cellular adaptation to hypoxia. RMZh. Meditsinskoe obozrenie. 2020;4:4:207-213. (In Russ.). https://doi.org/10.32364/2587-6821-2020-4-4-207-213
  12. Wiseman RL, Mesgarzadeh JS, Hendershot LM. Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell. 2022;82:8:1477-1491. https://doi.org/10.1016/j.molcel.2022.03.025
  13. Dang F, Nie L, Wei W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ. 2021;28:2:427-438.  https://doi.org/10.1038/s41418-020-00648-0
  14. Yung HW, Colleoni F, Dommett E, Cindrova-Davies T, Kingdom J, Murray AJ, Burton GJ. Noncanonical mitochondrial unfolded protein response impairs placental oxidative phosphorylation in early-onset preeclampsia. Proc Natl Acad Sci USA. 2019;116:36:18109-18118. https://doi.org/10.1073/pnas.1907548116
  15. Arnold PK, Jackson BT, Paras KI, Brunner JS, Hart ML, Newsom OJ, Alibeckoff SP, Endress J, Drill E, Sullivan LB, Finley LWS. A non-canonical tricarboxylic acid cycle underlies cellular identity. Nature. 2022;603;7901:477-481.  https://doi.org/10.1038/s41586-022-04475-w
  16. Hu M, Li J, Baker PN, Tong C. Revisiting preeclampsia: a metabolic disorder of the placenta. FEBS J. 2022;289:2:336-354.  https://doi.org/10.1111/febs.15745
  17. Nobakht M Gh BF. Application of metabolomics to preeclampsia diagnosis. Syst Biol Reprod Med. 2018;64:5:324-339.  https://doi.org/10.1080/19396368.2018.1482968
  18. Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol. 2020;66:116-128.  https://doi.org/10.1016/j.semcancer.2019.11.007
  19. Galluzzi L, Yamazaki T, Kroemer G. Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol. 2018;19:11:731-745.  https://doi.org/10.1038/s41580-018-0068-0
  20. Dai Y, Li TH, He X, Yan SB, Gao Y, Chen Y. The Effect and mechanism of asymmetric dimethylarginine regulating trophoblastic autophagy on fetal growth restriction. Reprod Sci. 2021;28:7:2012-2022. https://doi.org/10.1007/s43032-020-00442-w
  21. D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43:6:582-592.  https://doi.org/10.1002/cbin.11137
  22. Thiam HR, Wong SL, Wagner DD, Waterman CM. Cellular mechanisms of NETosis. Annu Rev Cell Dev Biol. 2020;36:191-218.  https://doi.org/10.1146/annurev-cellbio-020520-111016
  23. Guillotin F, Fortier M, Portes M, Demattei C, Mousty E, Nouvellon E, Mercier E, Chea M, Letouzey V, Gris JC, Bouvier S. Vital NETosis vs. suicidal NETosis during normal pregnancy and preeclampsia. Front Cell Dev Biol. 2023;10:1099038. https://doi.org/10.3389/fcell.2022.1099038
  24. Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications — cause and consequence of genome function. Nat Rev Genet. 2022;23:9:563-580.  https://doi.org/10.1038/s41576-022-00468-7
  25. Smith MR, Satter LRF, Vargas-Hernández A. STAT5b: A master regulator of key biological pathways. Front Immunol. 2023; 13:1025373. https://doi.org/10.3389/fimmu.2022.1025373
  26. White SM, Bhoj E, Nellåker C, Lachmeijer AMA, Marshall AE, Boycott KM, Li D, Smith W, Hartley T, McBride A, Ernst ME, May AS, Wieczorek D, Abou Jamra R, Koch-Hogrebe M, Õunap K, Pajusalu S, van Gassen KLI, Sadedin S, Ellingwood S, Tan TY, Christodoulou J, Barea J, Lockhart PJ; Care4Rare Canada Consortium; Nezarati MM, Kernohan KD. A DNA repair disorder caused by de novo monoallelic DDB1 variants is associated with a neurodevelopmental syndrome. Am J Hum Genet. 2021;108:4:749-756.  https://doi.org/10.1016/j.ajhg.2021.03.007
  27. Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol. 2022;221:6:e202201159. https://doi.org/10.1083/jcb.202201159
  28. Agostinis C, Bulla R, Tripodo C, Gismondi A, Stabile H, Bossi F, Guarnotta C, Garlanda C, De Seta F, Spessotto P, Santoni A, Ghebrehiwet B, Girardi G, Tedesco F. An alternative role of C1q in cell migration and tissue remodeling: contribution to trophoblast invasion and placental development. J Immunol. 2010;185:7:4420-4429. https://doi.org/10.4049/jimmunol.0903215
  29. Singh J, Ahmed A, Girardi G. Role of complement component C1q in the onset of preeclampsia in mice. Hypertension. 2011;58: 4:716-724.  https://doi.org/10.1161/HYPERTENSIONAHA.111.175919
  30. Carvajal L, Gutiérrez J, Morselli E, Leiva A. Autophagy process in trophoblast cells invasion and differentiation: Similitude and differences with cancer cells. Front Oncol. 2021;11:637594. https://doi.org/10.3389/fonc.2021.637594
  31. Database «Kyoto Encyclopedia of Genes and Genome» (KEGG). https://www.kegg.jp/kegg-bin/show_pathway?hsa04510
  32. Database «Kyoto Encyclopedia of Genes and Genome» (KEGG). https://www.kegg.jp/kegg-bin/show_pathway?hsa04512
  33. Database «Kyoto Encyclopedia of Genes and Genome» (KEGG). https://www.kegg.jp/kegg-bin/show_pathway?hsa04151
  34. Roediger M, Miosge N, Gersdorff N. Tissue distribution of the laminin beta1 and beta2 chain during embryonic and fetal human development. J Mol Histol. 2010;41:2-3:177-184.  https://doi.org/10.1007/s10735-010-9275-5

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.