Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Ляшенко Е.Н.

ФГАОУ ВО «Крымский федеральный университет имени В.И. Вернадского» Минобрнауки России

Саенко Ю.С.

ФГАОУ ВО «Крымский федеральный университет имени В.И. Вернадского» Минобрнауки России

Молекулярные механизмы преэклампсии

Авторы:

Ляшенко Е.Н., Саенко Ю.С.

Подробнее об авторах

Журнал: Проблемы репродукции. 2025;31(2): 44‑53

Прочитано: 648 раз


Как цитировать:

Ляшенко Е.Н., Саенко Ю.С. Молекулярные механизмы преэклампсии. Проблемы репродукции. 2025;31(2):44‑53.
Lyashenko EN, Saenko JS. Molecular mechanisms of preeclampsia. Russian Journal of Human Reproduction. 2025;31(2):44‑53. (In Russ.)
https://doi.org/10.17116/repro20253102144

Рекомендуем статьи по данной теме:
О мо­ле­ку­ляр­но-ге­не­ти­чес­ких пре­дик­то­рах пре­эк­лам­псии. Рос­сий­ский вес­тник аку­ше­ра-ги­не­ко­ло­га. 2024;(6):26-34

Литература / References:

  1. Magee LA, Brown MA, Hall DR, Gupte S, Hennessy A, Karumanchi SA, Kenny LC, McCarthy F, Myers J, Poon LC, Rana S, Saito S, Staff AC, Tsigas E, von Dadelszen P. The 2021 International Society for the Study of Hypertension in Pregnancy classification, diagnosis & management recommendations for international practice. Hypertension in Pregnancy. 2022;27:148-169.  https://doi.org/10.1016/j.preghy.2021.09.008
  2. Gyselaers W. Preeclampsia Is a Syndrome with a Cascade of Pathophysiologic Events. Journal of Clinical Medicine. 2020;9(7). https://doi.org/10.3390/jcm9072245
  3. Aneman I, Pienaar D, Suvakov S, Simic TP, Garovic VD, McClements L. Mechanisms of Key Innate Immune Cells in Early- and Late-Onset Preeclampsia. Frontiers in Immunology. 2020;11.  https://doi.org/10.3389/fimmu.2020.01864
  4. Apicella C, Ruano C, Méhats C, Miralles F, Vaiman D. The Role of Epigenetics in Placental Development and the Etiology of Preeclampsia. The International Journal of Molecular Sciences. 2019; 20:2837. https://doi.org/10.3390/ijms20112837
  5. Huppertz B. Biology of preeclampsia: Combined actions of angiogenic factors, their receptors and placental proteins. Biochimica et Biophysica Acta. Molecular Basis of Disease. 2020:2020;1866. https://doi.org/10.1016/j.bbadis.2018.11.024
  6. Townsend R, O’Brien P, Khalil A. Current best practice in the management of hypertensive disorders in pregnancy. Integrated Blood Pressure Control. 2016;9:79-94.  https://doi.org/10.2147/IBPC.S77344
  7. Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: a systematic review and meta-analysis. British Medical Journal. 2007;335:974-977.  https://doi.org/10.1136/bmj.39335.385301.BE
  8. American College of Obstetricians and Gynecologists. Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstetrics and Gynecology. 2013;122(5):1122-1131. https://doi.org/10.1097/01.AOG.0000437382.03963.88
  9. Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nature Reviews Nephrology. 2019;15(5):275-289.  https://doi.org/10.1038/s41581-019-0119-6
  10. Brosens I, Puttemans P, Benagiano G. Placental bed research: I. The placental bed: From spiral arteries remodeling to the great obstetrical syndromes. American Journal of Obstetrics and Gynecology. 2019;221:437-456.  https://doi.org/10.1016/j.ajog.2019.05.044
  11. Mutter WP, Karumanchi SA. Molecular mechanisms of preeclampsia. Microvascular Research. 2008;75:1-8.  https://doi.org/10.1016/j.mvr.2007.04.009
  12. Matyas M, Hasmasanu M, Silaghi CN, Samasca G, Lupan I, Orsolya K, Zaharie G. Early Preeclampsia Effect on Preterm Newborns Outcome. Journal of Clinical Medicine. 2022;11(2):452.  https://doi.org/10.3390/jcm11020452
  13. Shear RM, Rinfret D, Leduc L. Should we offer expectant management in cases of severe preterm preeclampsia with fetal growth restriction? American Journal of Obstetrics and Gynecology. 2005;192: 1119-1125. https://doi.org/10.1016/j.ajog.2004.10.621
  14. Weiler J, Tong S, Palmer KR. Is fetal growth restriction associated with a more severe maternal phenotype in the setting of early onset pre-eclampsia? A retrospective study. PLoS One. 2011;6(10):0026937. https://doi.org/10.1371/journal.pone.0026937
  15. Verlohren S, Melchiorre K, Khalil A, Thilaganathan B. Uterine artery Doppler, birth weight and timing of onset of pre-eclampsia: providing insights into the dual etiology of late-onset preeclampsia. Ultrasound in Obstetrics and Gynecology. 2014;44(3):293-298.  https://doi.org/10.1002/uog.13310
  16. Chang KJ, Seow KM, Chen KH. Preeclampsia: Recent Advances in Predicting, Preventing, and Managing the Maternal and Fetal Life-Threatening Condition. International Journal of Environmental Research and Public Health. 2023;20(4):2994. https://doi.org/10.3390/ijerph20042994
  17. Perry H, Khalil A, Thilaganathan B. New aspects on the etiology of preeclampsia. Preeclampsia and the cardiovascular system: An update. Trends in Cardiovascular Medicine. 2018;28(8):505-513.  https://doi.org/10.1016/j.tcm.2018.04.009
  18. Pereira MM, Torrado J, Sosa C, Zócalo Y, Bia D. Role of arterial impairment in preeclampsia: should the paradigm shift? American Journal of Physiology — Heart and Circulatory Physiology. 2021; 320(5):H2011-H2030. https://doi.org/10.1152/ajpheart.01005.2020
  19. Turbeville HR, Sasser JM. Preeclampsia beyond pregnancy: Long-term consequences for mother and child. American Journal of Physiology. 2020;318:F1315-F1326. https://doi.org/10.1152/ajprenal.00071.2020
  20. Sławek-Szmyt S, Kawka-Paciorkowska K, Ciepłucha A, Lesiak M, Ropacka-Lesiak M. Preeclampsia and Fetal Growth Restriction as Risk Factors of Future Maternal Cardiovascular Disease — A Review. Journal of Clinical Medicine. 2022;11.  https://doi.org/10.3390/jcm11206048
  21. Wang Y, Li B, Zhao Y. Inflammation in Preeclampsia: Genetic Biomarkers, Mechanisms, and Therapeutic Strategies. Frontiers in Immunology. 2022;13:883404. https://doi.org/10.3389/fimmu.2022.883404
  22. Opichka MA, Rappelt MW, Gutterman DD, Grobe JL, McIntosh JJ. Vascular Dysfunction in Preeclampsia. Cells. 2021;10(11):3055. https://doi.org/10.3390/cells10113055
  23. Brownfoot FC, Hannan NJ, Cannon P, Nguyen V, Hastie R, Parry LJ, Senadheera S, Tuohey L, Tong S, Kaitu’u-Lino TJ. Sulfasalazine reduces placental secretion of antiangiogenic factors, up-regulates the secretion of placental growth factor and rescues endothelial dysfunction. EBioMedicine. 2019;41:636-648.  https://doi.org/10.1016/j.ebiom.2019.02.013
  24. Wang J, Zhu QW, Cheng XY, Liu JY, Zhang LL, Tao YM, Cui YB, Wei Y. Assessment efficacy of neutrophil-lymphocyte ratio and monocyte-lymphocyte ratio in preeclampsia. American Journal of Reproductive Immunology. 2019;132:29-34.  https://doi.org/10.1016/j.jri.2019.02.001
  25. Ma Y, Ye Y, Zhang J, Ruan C.-C, Gao P.-J. Immune imbalance is associated with the development of preeclampsia. Medicine (Baltimore). 2019;98:0000000000015080. https://doi.org/10.1097/MD.0000000000015080
  26. Dimitriadis E, Rolnik DL, Zhou W, Estrada-Gutierrez G, Koga K, Francisco RPV, Whitehead C, Hyett J, da Silva Costa F, Nicolaides K, Menkhorst E. Pre-eclampsia. Nature Reviews Disease Primers. 2023;9(1):8.  https://doi.org/10.1038/s41572-023-00417-6
  27. Tabacco S, Ambrosii S, Polsinelli V, Fantasia I, D’Alfonso A, Ludovisi M, Cecconi S, Guido M. Pre-Eclampsia: From Etiology and Molecular Mechanisms to Clinical Tools — A Review of the Literature. Current Issues in Molecular Biology. 2023;45:6202-6215. https://doi.org/10.3390/cimb45080391
  28. Dymara-Konopka W, Laskowska M, Blazewicz A. Angiogenic imbalance as a contributor of preeclampsia. Current Pharmaceutical Biotechnology. 2018;19(10):797-815.  https://doi.org/10.2174/1389201019666180925115559
  29. Rybak-Krzyszkowska M, Staniczek J, Kondracka A, Bogusławska J, Kwiatkowski S, Góra T, Strus M, Górczewski W. From Biomarkers to the Molecular Mechanism of Preeclampsia-A Comprehensive Literature Review. The International Journal of Molecular Sciences. 2023;24(17):13252. https://doi.org/10.3390/ijms241713252
  30. Failla CM, Carbo M, Morea V. Positive and negative regulation of angiogenesis by soluble vascular endothelial growth factor receptor-1. International Journal of Molecular Sciences. 2018;19:1306-1322. https://doi.org/10.3390/ijms19051306
  31. Cianfarani F, Zambruno G, Brogelli L, Sera F, Lacal PM, Pesce M, Capogrossi MC, Failla CM, Napolitano M, Odorisio T. Placenta growth factor in diabetic wound healing: altered expression and therapeutic potential. The American Journal of Pathology. 2006; 169:1167-1182. https://doi.org/10.2353/ajpath.2006.051314
  32. Gonzales SK, Badell M, Cottrell H, Rimawi B, Deepak V, Sidell N, Rajakumar A. Villous explants from preeclamptic placentas induce sFlt1 in PBMCs: An ex vivo co-culture study. Hypertension in Pregnancy. 2018;12:40-46.  https://doi.org/10.1016/j.preghy.2018.02.006
  33. Pimentel AM, Pereira NR, Costa CA, Mann GE, Cordeiro VSC, de Moura RS, Brunini TMC, Mendes-Ribeiro AC, Resende AC. L-arginine-nitric oxide pathway and oxidative stress in plasma and platelets of patients with pre-eclampsia. Hypertension Research. 2013;36:783-788.  https://doi.org/10.1038/hr.2013.34
  34. Zeng Y, Li M, Chen Y, Wang S. Homocysteine, endothelin-1 and nitric oxide in patients with hypertensive disorders complicating pregnancy. The International Journal of Clinical and Experimental Pathology. 2015;8:15275-15279.
  35. Robertson SA. Preventing Preeclampsia by Silencing Soluble Flt-1? The New England Journal of Medicine. 2019;380:1080-1082. https://doi.org/10.1056/NEJMcibr1817501
  36. Marshall SA, Hannan NJ, Jelinic M, Nguyen TPH, Girling JE, Parry LJ. Animal models of preeclampsia: Translational failings and why. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2018;314:R499-R508. https://doi.org/10.1152/ajpregu.00355.2017
  37. Kim MW, Hong SC, Choi JS, Han J-Y, Oh M-J, Kim HJ, Nava-Ocampo A, Koren G. Homocysteine, folate and pregnancy outcomes. Journal of Obstetrics and Gynaecology. 2012;32:520-524.  https://doi.org/10.3109/01443615.2012.693984
  38. Dekker AG, DeVries JIP, Doelitzsch PM, Huijgens PC, von Blomberg BM, Jakobs C, van Geijn HP. Underlying disorders associated with severe early onset preeclampsia. American Journal of Obstetrics and Gynecology. 1995;173:1042-1048. https://doi.org/10.1016/0002-9378(95)91324-6
  39. Maged AM, Saad H, Meshaal H, Salah E, Abdelaziz S, Omran E, Deeb WS, Katta M. Maternal serum homocysteine and uterine artery Doppler as predictors of preeclampsia and poor placentation. Archives of Gynecology and Obstetrics. 2017;296:475-482.  https://doi.org/10.1007/s00404-017-4609-0
  40. Dymara-Konopka W, Laskowska M. The Role of Nitric Oxide, ADMA, and Homocysteine in The Etiopathogenesis of Preeclampsia — Review. The International Journal of Molecular Sciences. 2019;20:2757. https://doi.org/10.3390/ijms20112757
  41. Herrmann W, Isber S, Obeid R, Herrmann M, Jouma M. Concentrations of homocysteine, related metabolites and asymmetric dimethylarginine in preeclamptic women with poor nutritional status. Clinical Chemistry and Laboratory Medicine. 2005;43:1139-1146. https://doi.org/10.1515/CCLM.2005.198
  42. Veldman BA, Vervoort G, Blom H, Smits P. Reduced plasma total homocysteine concentrations in Type 1 diabetes mellitus is determined by increased renal clearance. Diabetic Medicine. 2005;22:301-305.  https://doi.org/10.1111/j.1464-5491.2005.01415.x
  43. Liang B, Wang X, Zhang N, Yang H, Bai R, Liu M, Bian Y, Xiao C, Yang Z. Angiotensin-(1-7) attenuates angiotensin II-induced ICAM-1, VCAM-1, and MCP-1 expression via the MAS receptor through suppression of P38 and NF-κB pathways in HUVECs. Cellular Physiology and Biochemistry. 2015;35:2472-2482. https://doi.org/10.1159/000374047
  44. Virtanen A, Huttala O, Tihtonen K, Toimela T, Heinonen T, Uotila J. Angiogenic capacity in pre-eclampsia and uncomplicated pregnancy estimated by assay of angiogenic proteins and an in vitro vasculogenesis/angiogenesis test. Angiogenesis. 2018;22(1):67-74.  https://doi.org/10.1007/s10456-018-9637-2
  45. Litwińska E, Litwińska M, Oszukowski P, Szaflik K, Kaczmarek P. Combined screening for early and late pre-eclampsia and intrauterine growth restriction by maternal history, uterine artery Doppler, mean arterial pressure and biochemical markers. Advances in Clinical and Experimental Medicine. 2017;26:439-448.  https://doi.org/10.17219/acem/62214
  46. Poon LC, Lesmes C, Gallo DM, Akolekar R, Nicolaides KH. Prediction of small for-gestational-age neonates: screening by biophysical and biochemical markers at 19-24 weeks. Ultrasound in Obstetrics and Gynecology. 2015;46:437-445.  https://doi.org/10.1002/uog.14904
  47. Ukah UV, Hutcheon JA, Payne B, Haslam MD, Vatish M, Ansermino JM, Brown H, Magee LA, von Dadelszen P. Placental growth factor as a prognostic tool in women with hypertensive disorders of pregnancy: a systematic review. Hypertension. 2017;70:1228-1237. PMID: 29084878; PMCID: PMC5680987. https://doi.org/10.1161/HYPERTENSIONAHA.117.10150
  48. Meng Q, Duan P, Li L, Miao Y. Expression of placenta growth factor is associated with unfavorable prognosis of advanced-stage serous ovarian cancer. The Tohoku Journal of Experimental Medicine. 2018;244(4):291-296.  https://doi.org/10.1620/tjem.244.291
  49. Dumnicka P, Sporek M, Mazur-Laskowska M, Ceranowicz P, Kuźniewski M, Drożdż R, Ambroży T, Olszanecki R, Kuśnierz-Cabala B. Serum soluble Fms-like tyrosine kinase 1 (sFlt-1) predicts the severity of acute pancreatitis. The International Journal of Molecular Sciences. 2016;17:2038. https://doi.org/10.3390/ijms17122038
  50. Chelli D, Hamdi A, Saoudi S, Zagre A, Jguerim H, Bedis C, Sfar E. Clinical assessment of soluble FMS-like tyrosine kinase-1/placental growth factor ratio for the diagnostic and the prognosis of preeclampsia in the second trimester. Clinical Laboratory. 2016;62:1927-1932. PMID: 28164532. https://doi.org/10.7754/Clin.Lab.2016.151004
  51. Ridder A, Giorgione V, Khalil A, Thilaganathan B. Preeclampsia: The Relationship between Uterine Artery Blood Flow and Trophoblast Function. The International Journal of Molecular Sciences. 2019;20:3263. https://doi.org/10.3390/ijms20133263
  52. Dewerchin M, Carmeliet P. PlGF: a multitasking cytokine with disease-restricted activity. Cold Spring Harbor Perspectives in Medicine. 2012;2(8):011056. https://doi.org/10.1101/cshperspect.a011056
  53. Sammar M, Drobnjak T, Mandala M, Gizurarson S, Huppertz B, Meiri H. Galectin 13 (PP13) Facilitates Remodeling and Structural Stabilization of Maternal Vessels during Pregnancy. The International Journal of Molecular Sciences. 2019;20:3192. https://doi.org/10.3390/ijms20133192
  54. Sammar M, Dragovic R, Meiri H, Vatish M, Sharabi-Nov A, Sargent I, Redman C, Tannetta D. Reduced placental protein 13 (PP13) in placental derived syncytiotrophoblast extracellular vesicles in preeclampsia — a novel tool to study the impaired cargo transmission of the placenta to the maternal organs. Placenta. 2018;66:17-25.  https://doi.org/10.1016/j.placenta.2018.04.013
  55. Huppertz B, Sammar M, Chefetz I, Neumaier-Wagner P, Bartz C, Meiri H. Longitudinal determination of serum placental protein 13 during development of preeclampsia. Fetal Diagnosis and Therapy. 2008;24:230-236.  https://doi.org/10.1159/000151344
  56. Huppertz B, Meiri H, Gizurarson S, Osol G, Sammar M. Placental protein 13 (PP13): a new biological target shifting individualized risk assessment to personalized drug design combating pre-eclampsia. Human Reproduction Update. 2013;19:391-405.  https://doi.org/10.1093/humupd/dmt003
  57. Drobnjak T, Jónsdóttir AM, Helgadóttir H, Runólfsdóttir MS, Meiri H, Sammar M, Osol G, Mandalà M, Huppertz B, Gizurarson S. Placental protein 13 (PP13) stimulates rat uterine vessels after slow subcutaneous administration. Drug Design, Development and Therapy. 2018;11:213-222.  https://doi.org/10.2147/IJWH.S188303
  58. Spiezia L, Bogana G, Campello E, Maggiolo S, Pelizzaro E, Carbonare CD, Gervasi MT, Simioni P. Whole blood thromboelastometry profiles in women with preeclampsia. Clinical Chemistry and Laboratory Medicine. 2015;53:1793-1798. https://doi.org/10.1515/cclm-2014-1128
  59. Honkura N, Richards M, Laviña B, Sáinz-Jaspeado M, Betsholtz C, Claesson-Welsh L. Intravital imaging-based analysis tools for vessel identification and assessment of concurrent dynamic vascular events. Nature Communications. 2018;9(1):2746. https://doi.org/10.1038/s41467-018-04929-8

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.