Скрябин В.Ю.

ГБУЗ «Московский научно-практический центр наркологии ДЗМ»

Застрожин М.С.

ГБУЗ Москвы «Московский научно-практический центр наркологии Департамента здравоохранения Москвы»;
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России;
Университет Калифорнии в Сан-Франциско

Брюн Е.А.

ГБУЗ Москвы «Московский научно-практический центр наркологии Департамента здравоохранения Москвы»;
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России

Сычев Д.А.

ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России

Фармакогенетика нежелательных лекарственных реакций карбамазепина

Авторы:

Скрябин В.Ю., Застрожин М.С., Брюн Е.А., Сычев Д.А.

Подробнее об авторах

Журнал: Российский журнал боли. 2022;20(4): 70‑74

Прочитано: 10359 раз


Как цитировать:

Скрябин В.Ю., Застрожин М.С., Брюн Е.А., Сычев Д.А. Фармакогенетика нежелательных лекарственных реакций карбамазепина. Российский журнал боли. 2022;20(4):70‑74.
Skryabin VYu, Zastrozhin MS, Bryun EA, Sychev DA. Pharmacogenetics of carbamazepine adverse drug reactions. Russian Journal of Pain. 2022;20(4):70‑74. (In Russ.)
https://doi.org/10.17116/pain20222004170

Рекомендуем статьи по данной теме:
Псо­ри­аз у бе­ре­мен­ных. Кли­ни­чес­кая дер­ма­то­ло­гия и ве­не­ро­ло­гия. 2024;(5):517-524
Ту­бер­ку­лез­ный сред­ний отит у под­рос­тка. Кли­ни­чес­кий слу­чай. Вес­тник ото­ри­но­ла­рин­го­ло­гии. 2024;(5):63-66
Хи­рур­ги­чес­кое ле­че­ние вто­рич­ной три­ге­ми­наль­ной нев­рал­гии. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(11):203-209
Чер­ный акан­тоз: воп­ро­сы ди­аг­нос­ти­ки и ле­че­ния. Кли­ни­чес­кая дер­ма­то­ло­гия и ве­не­ро­ло­гия. 2024;(6):709-712

На сегодняшний день карбамазепин широко применяется в качестве противоэпилептического средства, но оно не утратило своего значения и первое направление терапии, по которому его применили, — лечение нейропатической боли. Имеющиеся данные свидетельствуют о том, что при лечении нейропатической боли в общей популяции карбамазепин обладает такой же эффективностью, как габапентин, но с меньшей частотой нежелательных реакций [1]. Эффект карбамазепина обусловлен возможностью воздействия как на периферический, так и на центральный компонент патогенеза невралгии, что принято объяснять уменьшением высокочастотной повторяющейся импульсации нейронов посредством блокирования потенциалзависимых натриевых и кальциевых каналов в периферических нервах [2]. Недавно проведенные исследования показали, что карбамазепин в клинически достижимых концентрациях действует как модулятор активации потенциалзависимых натриевых каналов Nav1.7 [3]. Кроме того, карбамазепин за счет своего анксиолитического действия способен воздействовать на эмоционально-аффективный компонент боли.

Карбамазепин является препаратом первой линии при лечении невралгии тройничного нерва [4], он приводит к ослаблению выраженности боли у 70—80% пациентов. При болевой форме диабетической полинейропатии применение карбамазепина ослабляет выраженность боли у 30—50% пациентов, при этом частота возникновения нежелательных лекарственных реакций (НЛР) составляет 25—50% [5].

Метаболизм карбамазепина происходит преимущественно по эпоксидному пути в печени, при этом образуется активный метаболит карбамазепин-10,11-эпоксид, обладающий потенциальной токсичностью, и неактивный конъюгат с глюкуроновой кислотой [6]. Образование карбамазепин-10,11-эпоксида катализируется преимущественно ферментом CYP3A4, однако, по данным литературы, в этой реакции также участвуют CYP2C8 и CYP3A5 [7]. Карбамазепин-10,11-эпоксид метаболизируется до неактивной водорастворимой молекулы карбамазепин-10,11-транс-дигидродиола, выводящегося с мочой, при участии уридиндифосфатглюкуронозилтрансферазы UGT2B7 и микросомальной эпоксидгидролазы EPHX1 [8, 9].

Длительное лечение карбамазепином сопряжено с развитием НЛР, обусловленных механизмом действия лекарственного средства и изменчивостью уровня его метаболитов в крови, а индекс потенциального вреда карбамазепина (от англ. number needed to harm — NNH: показатель, равный среднему числу больных в определенной группе, которые должны получить данное вмешательство, чтобы у одного дополнительного больного развился неблагоприятный исход) оценивается на уровне 3,7 [10].

К наиболее частым НЛР со стороны центральной нервной системы, возникающим на фоне применения карбамазепина, относятся нарушения сна, головокружение, головная боль, нарушения памяти, атаксия и диплопия; со стороны желудочно-кишечного тракта — анорексия, тошнота, рвота, полидипсия и снижение или увеличение массы тела [11]; до 10% пациентов могут иметь кожные НЛР различной степени тяжести [12].

Как и в случае со многими другими лекарственными средствами, лечение карбамазепином может привести к различным последствиям. Оно может быть эффективным и вызывать серьезные НЛР у одной группы пациентов, в то время как у других пациентов может отсутствовать ответ на терапию с точки зрения токсичности или терапевтического эффекта. Результаты проведенных исследований показали, что индивидуальные генетические особенности пациентов являются основным фактором, обусловливающим такие различия [13]. Фармакогенетика призвана объяснить влияние генетических вариаций на выраженность ответа на фармакотерапию, а также на вероятность возникновения определенных НЛР, тем самым повышая эффективность и безопасность назначаемого лечения.

Исследования, оценивающие влияние генетических изменений на риск развития НЛР у карбамазепина, фокусируются на индивидуальных вариантах генов, кодирующих ферменты и белки-переносчики (преимущественно для дозозависимых НЛР), и генах, связанных с иммунитетом (HLA-аллели) для идиосинкразических НЛР [14].

HLA-аллели, ассоциированные с возникновением НЛР со стороны кожного покрова

Существует несколько гипотез, объясняющих механизм развития НЛР со стороны кожного покрова. Считается, что карбамазепин связывается непосредственно с рецепторами клеток иммунной системы, в частности, с Т-клеточными рецепторами (TCR) и HLA. Установлено, что для распознавания карбамазепина требуется наличие определенных клонотипов, а различные HLA-аллели, такие как HLA-B*15:02, содержат остатки для связывания карбамазепина [15]. Кроме того, механизм развития НЛР со стороны кожи при приеме карбамазепина связан с его биотрансформацией в токсичные промежуточные метаболиты, такие как карбамазепин-10,11-эпоксид, и их последующим связыванием с клеточными белками [16].

HLA-аллели стали предметом изучения фармакогенетики карбамазепина для прогнозирования НЛР со стороны кожного покрова, поскольку в исследованиях была обнаружена выраженная ассоциация между развитием синдрома Стивенса—Джонсона/синдрома Лайелла на фоне приема карбамазепина и носительством аллеля HLA-B*15:02 у представителей китайской популяции [17, 18]. При этом распространенность данного аллеля очень низка в европеоидной популяции, для которой не было обнаружено каких-либо ассоциаций между его носительством и частотой развития синдрома Стивенса—Джонсона/синдрома Лайелла на фоне приема карбамазепина [19]. По этой причине в декабре 2007 г. Управление по контролю качества пищевых продуктов и лекарственных препаратов США (FDA) одобрило внесение изменений в инструкцию по медицинскому применению карбамазепина, включив в нее генетическую информацию, и рекомендовало проведение генетического скрининга на аллель HLA-B*15:02 перед началом терапии карбамазепином у пациентов азиатского происхождения [12].

Результаты исследования, проведенного методом полногеномного поиска ассоциаций (от англ. genome-wide association studies — GWAS), продемонстрировали взаимосвязь между носительством аллеля HLA-A*31:01 и развитием синдрома гиперчувствительности к карбамазепину у лиц североевропейского происхождения. Носительство этого аллеля повышало риск развития НЛР со стороны кожного покрова на фоне терапии карбамазепином с 5,0 до 26,0% [20]. Впоследствии в ряде исследований сообщалось об установлении ассоциаций между носительством аллеля HLA-A*31:01 и частотой возникновения синдрома Стивенса—Джонсона/синдрома Лайелла при применении карбамазепина у пациентов европеоидной расы, а также японского и корейского происхождения [21].

Кроме того, было установлено, что с развитием синдрома Стивенса—Джонсона/синдрома Лайелла при применении карбамазепина у лиц корейского и японского происхождения ассоциируется носительство аллеля HLA-B*15:11 [22]. Частота носительства аллеля HLA-B*15:11 различается у представителей разных азиатских популяций: данный аллель чаще встречается у корейцев (частота 1,96%) и японцев (частота 0,4—0,8%) [21].

Экономическая целесообразность выявления биомаркеров, позволяющих прогнозировать развитие НЛР со стороны кожного покрова, была подтверждена в рамках исследований. Например, сообщалось, что генотипирование HLA-B*15:02 перед назначением карбамазепина является экономически эффективным в некоторых популяциях, а именно у пациентов сингапурского, китайского, малайского и тайского происхождения [23], а скрининг HLA-A*31:01 — у представителей европеоидной расы [24].

В исследованиях также изучались другие полиморфизмы генов главного комплекса гистосовместимости и их связь с развитием НЛР со стороны кожного покрова при применении карбамазепина. Показано, что полиморфизмы в промоторной области гена фактора некроза опухоли α (ФНОα), а также полиморфизмы генов белка теплового шока (HSP70) ассоциированы с тяжелыми реакциями гиперчувствительности к карбамазепину [25, 26]. Кроме того, установлена предполагаемая слабая ассоциация носительства аллеля c.*1421T>C в 3-праймовой нетранслируемой области гена CYP2B6 с появлением макулопапулезной сыпи и развитием синдрома гиперчувствительности [27].

Гены глутатион S-трансфераз

Глутатион-S-трансферазы (GST) представляют собой суперсемейство ферментов, катализирующих детоксикацию эндогенных и экзогенных цитотоксинов [28]. Полиморфизмы генов глутатион-S-трансфераз M1 (GSTM1) и T1 (GSTT1) ранее широко исследовались в онкологии, а в последние годы стали изучаться и в отношении механизма развития НЛР [29]. Одними из наиболее распространенных полиморфизмов являются делеции генов GSTM1 и GSTT1, которые приводят к отсутствию соответствующих ферментов. Носительство «нулевых» генотипов GSTM1 и GSTT1 часто встречается среди представителей европеоидной и монголоидной рас [30]. Некоторые метаболиты карбамазепина, связанные с возникновением НЛР на фоне его применения, такие как карбамазепин-10,11-эпоксид или оксид арена, инактивируются глутатионзависимыми ферментами [31]. Исследование, проведенное в Японии и включающее 192 пациента с эпилепсией, получавших лечение карбамазепином, показало взаимосвязь между носительством делетированного аллеля GSTM1 и развитием гепатотоксичности легкой степени, в то время как у пациентов, не имеющих обоих аллелей этого гена, отмечались более высокие уровни аланинаминотрансферазы и аспартатаминотрансферазы в плазме [32]. Поскольку гепатотоксичность, вызванная приемом карбамазепина, непрогнозируема и может быть потенциально опасна для жизни, необходимо проведение дальнейших фармакогенетических исследований с целью повышения безопасности лечения карбамазепином.

Ген эпоксидгидролазы EPHX1

Поскольку карбамазепин-10,11-эпоксид играет важную роль в механизме развития НЛР, вызванных приемом карбамазепина, полиморфизмы гена EPHX1, кодирующего эпоксидгидролазу (фермент, ответственный за метаболизм эпоксида), могут быть связаны с повышенным риском возникновения НЛР. В одном исследовании, включающем 28 китайских пациентов с синдромом Стивенса—Джонсона/синдромом Лайелла, вызванными карбамазепином, была обнаружена значимая взаимосвязь между носительством полиморфизма c.337T>C гена EPHX1 и возникновением тяжелых НЛР со стороны кожного покрова [33]. В рамках ряда исследований изучалась взаимосвязь между носительством полиморфных вариантов c.337T>C и c.416A>G гена EPHX1 и концентрацией карбамазепина и его метаболитов в плазме, а также фармакокинетическими параметрами [34, 35]; однако влияние этих генетических полиморфизмов на развитие НЛР, вызванных приемом карбамазепина, требует дальнейшего изучения.

Ген ABCC2

Ген ABCC2 кодирует одноименный белок множественной лекарственной устойчивости 2 (от англ. multidrug resistance-associated protein 2 — MRP2), локализованный на апикальной мембране гепатоцитов и выводящий в желчь различные эндогенные и экзогенные вещества в виде глюкуронидов и конъюгатов с глутатионом. Кроме того, доказано присутствие представителей суперсемейства ABC в центральной нервной системе [36]. Ген ABCC2 также имеет полиморфные аллели, вклад которых в эффективность и безопасность терапии карбамазепином остается предметом изучения.

Проведенные фармакогенетические исследования выявили ассоциацию носительства полиморфизмов ABCC2 с различиями в показателях эффективности карбамазепина и его фармакокинетических параметрах [37]. При изучении безопасности терапии карбамазепином в рамках исследования, проведенного в Корее, была установлена выраженная ассоциация между носительством полиморфизма c.1249G>A (rs2273697) гена ABCC2 и возникновением неврологических НЛР, таких как головокружение, сонливость, тремор, диплопия и головная боль. Ассоциация была также получена при повторении анализа на другой группе пациентов: исследование показало, что карбамазепин является субстратом ABCC2 и что наличие остатка Ile417 приводит к образованию белка, селективно снижающего транспорт карбамазепина через клеточную мембрану. Учитывая, что ABCC2 является эффлюксным транспортером, это вызывает увеличение концентрации карбамазепина в головном мозге, что приводит к токсическим эффектам [38].

Гены CYP3A4CYP3A5

Полиморфизм CYP3A4*22 (rs35599367) в значительной степени связан с более низкими значениями отношения диол/эпоксид и с меньшей активностью изофермента, что обусловливает различия в значениях скорости индивидуального метаболизма карбамазепина [39]. Изоферменты CYP3A4 и CYP3A5 обладают сходной структурой и субстратной специфичностью. Ген CYP3A5 высокополиморфен, и носительство полиморфизма CYP3A5*3 (6986A>G, rs776746), наиболее распространенного нефункционального варианта, влияет на концентрацию карбамазепина в плазме [40]. У пациентов — носителей генотипа CYP3A5*3/*3 отмечались значительно более высокие уровни плазменной концентрации карбамазепина по сравнению с носителями генотипов CYP3A5*1/*1 или CYP3A5*1/*3. У гомозигот CYP3A5*3/*3 обнаруживается потребность в более низких дозировках карбамазепина и более низкие значения его клиренса по сравнению с гетерозиготами CYP3A5*1/*3 [41, 42]. Функциональные полиморфизмы CYP3A5 также играют важную роль в поддержании равновесной концентрации карбамазепина, следовательно, они могут быть непосредственно связаны с токсичностью лекарства [7]. Действительно, у пациентов — гомозигот CYP3A5*3/*3 часто отмечались проявления токсичности карбамазепина, а также более длительный период его полураспада и более низкая скорость клиренса по сравнению с носителями «дикого» генотипа [43]. Однако в литературе имеются противоречивые данные, касающиеся влияния полиморфизмов гена CYP3A5 на метаболизм карбамазепина. В ряде исследований сообщается, что у пациентов с разными генотипами CYP3A5 не выявлялось существенных различий с точки зрения требований к дозировке карбамазепина, его нормализованных по дозе плазменных концентраций и клиренса. Кроме того, у афроамериканцев — носителей CYP3A5*3/*3 отмечался более длительный период полураспада карбамазепина по сравнению с носителями CYP3A5*1/*1 или CYP3A5*1/*3, но эта разница не была значительной у представителей европеоидной расы. Таким образом, клиническое влияние генотипов CYP3A5*3 на показатели фармакокинетики карбамазепина требует дальнейшего изучения [44, 45].

Авторы заявляют об отсутствии конфликта интересов.

Литература / References:

  1. Davison SN. Clinical Pharmacology Considerations in Pain Management in Patients with Advanced Kidney Failure. Clin J Am Soc Nephrol. 2019;14(6):917-931.  https://doi.org/10.2215/CJN.05180418
  2. Давыдов О.С. Противоэпилептические препараты за рамками эпилепсии (применение антиконвульсантов в лечении болевых синдромов). Журнал неврологии и психиатрии им. С.С. Корсакова. 2013;113(4-2):58-65. 
  3. Dib-Hajj SD, Waxman SG. Sodium Channels in Human Pain Disorders: Genetics and Pharmacogenomics. Annu Rev Neurosci. 2019;42:87-106.  https://doi.org/10.1146/annurev-neuro-070918-050144
  4. Maarbjerg S, Di Stefano G, Bendtsen L, Cruccu G. Trigeminal neuralgia — diagnosis and treatment. Cephalalgia. 2017;37(7):648-657.  https://doi.org/10.1177/0333102416687280
  5. Савустьяненко А.В. Применение карбамазепина для лечения нейропатической боли: обзор исследований. Международный неврологический журнал. 2011;2(40):107-115. 
  6. Yip VLM, Pertinez H, Meng X, Maggs JL, Carr DF, Park BK, Marson AG, Pirmohamed M. Evaluation of clinical and genetic factors in the population pharmacokinetics of carbamazepine. Br J Clin Pharmacol. 2021;87(6):2572-2588. https://doi.org/10.1111/bcp.14667
  7. Iannaccone T, Sellitto C, Manzo V, Colucci F, Giudice V, Stefanelli B, Iuliano A, Corrivetti G, Filippelli A. Pharmacogenetics of Carbamazepine and Valproate: Focus on Polymorphisms of Drug Metabolizing Enzymes and Transporters. Pharmaceuticals (Basel). 2021;14(3):204.  https://doi.org/10.3390/ph14030204
  8. Нечаев М.О., Сычев Д.А., Застрожин М.С., Гришина Е.А., Сорокин А.С., Романов А.С., Агузаров А.Д., Савченко Л.М., Брюн Е.А. Фармакогенетические аспекты применения карбамазепина (обзор литературы). Наркология. 2019;18(4):68-82. 
  9. Карлов В.А., Власов П.Н., Кожокару А.Б., Орлова А.С. Эффективность и переносимость терапии пролонгированным карбамазепином впервые выявленной фокальной эпилепсии у взрослых с учетом индекса эпилептиформной активности. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(3):31-38. 
  10. Araya EI, Claudino RF, Piovesan EJ, Chichorro JG. Trigeminal Neuralgia: Basic and Clinical Aspects. Curr Neuropharmacol. 2020;18(2):109-119.  https://doi.org/10.2174/1570159X17666191010094350
  11. Marson AG, Al-Kharusi AM, Alwaidh M, Appleton R, Baker GA, Chadwick DW, Cramp C, Cockerell OC, Cooper PN, Doughty J, Eaton B, Gamble C, Goulding PJ, Howell SJ, Hughes A, Jackson M, Jacoby A, Kellett M, Lawson GR, Leach JP, Nicolaides P, Roberts R, Shackley P, Shen J, Smith DF, Smith PE, Smith CT, Vanoli A, Williamson PR; SANAD Study group. The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: An unblinded randomised controlled trial. Lancet. 2007;369(9566):1000-1015. https://doi.org/10.1016/S0140-6736(07)60460-7
  12. Jaramillo NM, Galindo IF, Vázquez AO, Cook HJ, LLerena A, López ML. Pharmacogenetic potential biomarkers for carbamazepine adverse drug reactions and clinical response. Drug Metabol Drug Interact. 2014;29(2):67-79.  https://doi.org/10.1515/dmdi-2013-0046
  13. Fricke-Galindo I, LLerena A, Jung-Cook H, López-López M. Carbamazepine adverse drug reactions. Expert Rev Clin Pharmacol. 2018;11(7):705-718.  https://doi.org/10.1080/17512433.2018.1486707
  14. Daly AK. Pharmacogenomics of adverse drug reactions. Genome Med. 2013;5(1):5.  https://doi.org/10.1186/gm409
  15. Khor AH-P, Lim K-S, Tan C-T, Wong S-M, Ng C-C. HLA-B*15:02 association with carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in an Indian population: A pooled-data analysis and meta-analysis. Epilepsia. 2014;55(11):120-124.  https://doi.org/10.1111/epi.12802
  16. Błaszczyk B, Lasoń W, Czuczwar SJ. Antiepileptic drugs and adverse skin reactions: An update. Pharmacol Rep. 2015;67(3):426-434.  https://doi.org/10.1016/j.pharep.2014.11.009
  17. Chung W-H, Hung S-I, Hong H-S, Hsih M-S, Yang L-C, Ho H-C, Wu J-Y, Chen Y-T. Medical genetics: A marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486.  https://doi.org/10.1038/428486a
  18. Leckband SG, Kelsoe JR, Dunnenberger HM, George AL Jr, Tran E, Berger R, Müller DJ, Whirl-Carrillo M, Caudle KE, Pirmohamed M; Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and carbamazepine dosing. Clin Pharmacol Ther. 2013;94(3):324-328.  https://doi.org/10.1038/clpt.2013.103
  19. Aihara M. Pharmacogenetics of cutaneous adverse drug reactions. J Dermatol. 2011;38(3):246-254.  https://doi.org/10.1111/j.1346-8138.2010.01196.x
  20. McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperavičiūtė D, Carrington M, Sills GJ, Marson T, Jia X, de Bakker PI, Chinthapalli K, Molokhia M, Johnson MR, O’Connor GD, Chaila E, Alhusaini S, Shianna KV, Radtke RA, Heinzen EL, Walley N, Pandolfo M, Pichler W, Park BK, Depondt C, Sisodiya SM, Goldstein DB, Deloukas P, Delanty N, Cavalleri GL, Pirmohamed M. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011;364(12):1134-1143. https://doi.org/10.1056/NEJMoa1013297
  21. Bloch KM, Sills GJ, Pirmohamed M, Alfirevic A. Pharmacogenetics of antiepileptic drug-induced hypersensitivity. Pharmacogenomics. 2014;15(6):857-868.  https://doi.org/10.2217/pgs.14.65
  22. Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M, Kurose K, Furuya H, Takahashi Y, Muramatsu M, Kinoshita S, Abe M, Ikeda H, Kashiwagi M, Song Y, Ueta M, Sotozono C, Ikezawa Z, Hasegawa R; JSAR research group. HLA-B*1511 is a risk factor for carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia. 2010;51(12):2461-2465. https://doi.org/10.1111/j.1528-1167.2010.02766.x
  23. Dong D, Sung C, Finkelstein EA. Cost-effectiveness of HLA-B*1502 genotyping in adult patients with newly diagnosed epilepsy in Singapore. Neurology. 2012;79(12):1259-1267. https://doi.org/10.1212/WNL.0b013e31826aac73
  24. Plumpton CO, Yip VLM, Alfirevic A, Marson AG, Pirmohamed M, Hughes DA. Cost-effectiveness of screening for HLA-A*31:01 prior to initiation of carbamazepine in epilepsy. Epilepsia. 2015;56(4):556-563.  https://doi.org/10.1111/epi.12937
  25. Pirmohamed M, Lin K, Chadwick D, Park BK. TNFα promoter region gene polymorphisms in carbamazepine-hypersensitive patients. Neurology. 2001;56(7):890-896.  https://doi.org/10.1212/wnl.56.7.890
  26. Alfirevic A, Mills T, Harrington P, Pinel T, Sherwood J, Jawaid A, Smith JC, March RE, Barratt BJ, Chadwick DW, Park BK, Pirmohamed M. Serious carbamazepine-induced hypersensitivity reactions associated with the HSP70 gene cluster. Pharmacogenet Genomics. 2006;16(4):287-296.  https://doi.org/10.1097/01.fpc.0000189800.88596.7a
  27. Thorn CF, Leckband SG, Kelsoe J, Leeder JS, Müller DJ, Klein TE, Altman RB. PharmGKB summary: carbamazepine pathway. Pharmacogenet Genomics. 2011;21(12):906-910.  https://doi.org/10.1097/FPC.0b013e328348c6f2
  28. Hayes JD, Flanagan JU, Jowsey IR. Glutathione Transferases. Annu Rev Pharmacol Toxicol. 2005;45:51-88.  https://doi.org/10.1146/annurev.pharmtox.45.120403.095857
  29. Zhao Y, Deng X, Song G, Qin S, Liu Z. The GSTM1 null genotype increased risk of gastric cancer: A meta-analysis based on 46 studies. PLoS One. 2013;8(11):e81403. https://doi.org/10.1371/journal.pone.0081403
  30. Garte S, Gaspari L, Alexandrie AK, Ambrosone C, Autrup H, Autrup JL, Baranova H, Bathum L, Benhamou S, Boffetta P, Bouchardy C, Breskvar K, Brockmoller J, Cascorbi I, Clapper ML, Coutelle C, Daly A, Dell’Omo M, Dolzan V, Dresler CM, Fryer A, Haugen A, Hein DW, Hildesheim A, Hirvonen A, Hsieh LL, Ingelman-Sundberg M, Kalina I, Kang D, Kihara M, Kiyohara C, Kremers P, Lazarus P, Marchand LL, Lechner MC, van Lieshout EM, London S, Manni JJ, Maugard CM, Morita S, Nazar-Stewart V, Noda K, Oda Y, Parl FF, Pastorelli R, Persson I, Peters WH, Rannug A, Rebbeck T, Risch A, Roelandt L, Romkes M, Ryberg D, Salagovic J, Schoket B, Seidegard J, Shields PG, Sim E, Sinnet D, Strange RC, Stucker I, Sugimura H, To-Figueras J, Vineis P, Yu MC, Taioli E. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev. 2001;10(12):1239-1248.
  31. Kalapos MP. Carbamazepine-provoked hepatotoxicity and possible aetiopathological role of glutathione in the events. Retrospective review of old data and call for new investigation. Adverse Drug React Toxicol Rev. 2002;21(3):123-141.  https://doi.org/10.1007/BF03256188
  32. Ueda K, Ishitsu T, Seo T, Ueda N, Murata T, Hori M, Nakagawa K. Glutathione S-transferase M1 null genotype as a risk factor for carbamazepine-induced mild hepatotoxicity. Pharmacogenomics. 2007;8(5):435-442.  https://doi.org/10.2217/14622416.8.5.435
  33. He X-J, Jian L-Y, He X-L, Tang M, Wu Y, Xu Y-Y, Sun X-J, Zhao L-M. Association of ABCB1, CYP3A4, EPHX1, FAS, SCN1A, MICA, and BAG6 polymorphisms with the risk of carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in Chinese Han patients with epilepsy. Epilepsia. 2014;55(8):1301-1306. https://doi.org/10.1111/epi.12655
  34. Hung C-C, Chang W-L, Ho J-L, Tai J-J, Hsieh T-J, Huang H-C, Hsieh Y-W, Liou H-H. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A and SCN2A genes with carbamazepine therapy optimization. Pharmacogenomics. 2012;13(2):159-169.  https://doi.org/10.2217/pgs.11.141
  35. Puranik YG, Birnbaum AK, Marino SE, Ahmed G, Cloyd JC, Remmel RP, Leppik IE, Lamba JK. Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics. 2013;14(1):35-45.  https://doi.org/10.2217/pgs.12.180
  36. Dallas S, Miller DS, Bendayan R. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev. 2006;58(2):140-161.  https://doi.org/10.1124/pr.58.2.3
  37. Ma C-L, Wu X-Y, Zheng J, Wu Z-Y, Hong Z, Zhong M-K. Association of SCN1A, SCN2A and ABCC2 gene polymorphisms with the response to antiepileptic drugs in Chinese Han patients with epilepsy. Pharmacogenomics. 2014;15(10):1323-1336. https://doi.org/10.2217/pgs.14.89
  38. Kim W-J, Lee JH, Yi J, Cho Y-J, Heo K, Lee SH, Kim SW, Kim M-K, Kim KH, Lee BI, Lee MG. A nonsynonymous variation in MRP2/ABCC2 is associated with neurological adverse drug reactions of carbamazepine in patients with epilepsy. Pharmacogenet Genomics. 2010;20(4):249-256.  https://doi.org/10.1097/FPC.0b013e328338073a
  39. Chbili C, Fathallah N, Laouani A, Nouira M, Hassine A, Amor SB, Ammou SB, Salem CB, Saguem S. Effects of EPHX1 and CYP3A4*22 genetic polymorphisms on carbamazepine metabolism and drug response among Tunisian epileptic patients. J Neurogenet. 2016;30(1):16-21.  https://doi.org/10.3109/01677063.2016.1155571
  40. Saiz-Rodríguez M, Almenara S, Navares-Gómez M, Ochoa D, Román M, Zubiaur P, Koller D, Santos M, Mejía G, Borobia AM, Rodríguez-Antona C, Abad-Santos F. Effect of the Most Relevant CYP3A4 and CYP3A5 Polymorphisms on the Pharmacokinetic Parameters of 10 CYP3A Substrates. Biomedicines. 2020;8(4):94.  https://doi.org/10.3390/biomedicines8040094
  41. Park P-W, Seo YH, Ahn JY, Kim K-A, Park J-Y. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients. J Clin Pharm Ther. 2009;34(5):569-574.  https://doi.org/10.1111/j.1365-2710.2009.01057.x
  42. Ganesapandian M, Ramasamy K, Adithan S, Narayan SK. Influence of cytochrome P450 3A5 (CYP3A5) genetic polymorphism on dose-adjusted plasma levels of carbamazepine in epileptic patients in South Indian population. Indian J Pharmacol. 2019;51(6):384-388.  https://doi.org/10.4103/ijp.IJP_122_19
  43. Al-Gahtany M, Karunakaran G, Munisamy M. Pharmacogenetics of CYP3A5 on Carbamazepine pharmacokinetics in epileptic patients developing toxicity. BMC Genomics. 2014;15:2.  https://doi.org/10.1186/1471-2164-15-S2-P2
  44. Milovanovic DD, Radosavljevic I, Radovanovic M, Milovanovic JR, Obradovic S, Jankovic S, Milovanovic D, Djordjevic N. CYP3A5 polymorphism in Serbian paediatric epileptic patients on carbamazepine treatment. Ser J Exp Clin Res. 2015;16:93-99. 
  45. Pham TH, Huynh HTM, Vo HT, Tran HM. Effect of CYP3A5 genotypes on serum carbamazepine concentrations at steady-state in Vietnamese epileptic patients. Res J Pharm Technol. 2020;13:2802.

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.