Клюшник Т.П.

ООО «МедЛайн», Клиника «ПланетаМед»

Генералов В.О.

ООО «МедЛайн», Клиника «ПланетаМед»

Ободзинская Т.Е.

ООО «МедЛайн», Клиника «ПланетаМед»

Ларионов Г.В.

ООО «МедЛайн», Клиника «ПланетаМед»

Александренкова А.Н.

ООО «МедЛайн», Клиника «ПланетаМед»

Факторы поддержания хронического воспаления при психических заболеваниях

Авторы:

Клюшник Т.П., Генералов В.О., Ободзинская Т.Е., Ларионов Г.В., Александренкова А.Н.

Подробнее об авторах

Прочитано: 1084 раза


Как цитировать:

Клюшник Т.П., Генералов В.О., Ободзинская Т.Е., Ларионов Г.В., Александренкова А.Н. Факторы поддержания хронического воспаления при психических заболеваниях. Журнал неврологии и психиатрии им. С.С. Корсакова. 2025;125(8):7‑15.
Klyushnik TP, Generalov VO, Obodzinskaya TE, Larionov GV, Aleksandrenkova AN. Factors supporting chronic inflammation in mental illness. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(8):7‑15. (In Russ.)
https://doi.org/10.17116/jnevro20251250817

Рекомендуем статьи по данной теме:
Мик­ро­би­ота ки­шеч­ни­ка при би­по­ляр­ном аф­фек­тив­ном расстройстве. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(11):28-33
Эти­оло­ги­чес­кие осо­бен­нос­ти но­зо­ко­ми­аль­но­го си­ну­си­та. Вес­тник ото­ри­но­ла­рин­го­ло­гии. 2024;(5):35-42

Литература / References:

  1. Sanada K, Montero-Marin J, Barceló-Soler A, et al. Effects of Mindfulness-Based Interventions on Biomarkers and Low-Grade Inflammation in Patients with Psychiatric Disorders: A Meta-Analytic Review. Int J Mol Sci. 2020;21(7):2484. https://doi.org/10.3390/ijms21072484
  2. Zipp F, Bittner S, Schafer DP. Cytokines as emerging regulators of central nervous system synapses. Immunity. 2023;56(5):914-925.  https://doi.org/10.1016/j.immuni.2023.04.011
  3. Camacho-Arroyo I, López-Griego L, Morales-Montor J. The role of cytokines in the regulation of neurotransmission. Neuroimmunomodulation. 2009;16(1):1-12.  https://doi.org/10.1159/000179661
  4. Troubat R, Barone P, Leman S, et al. Neuroinflammation and depression: A review. Eur J Neurosci. 2021;53(1):151-171.  https://doi.org/10.1111/ejn.14720
  5. Dawidowski B, Górniak A, Podwalski P, et al. The Role of Cytokines in the Pathogenesis of Schizophrenia. J Clin Med. 2021;10(17):3849. https://doi.org/10.3390/jcm10173849
  6. Клюшник Т.П., Зозуля С.А., Андросова Л.В. и др. Иммунологический мониторинг эндогенных приступообразных психозов. Журнал неврологии и психиатрии им. С.С. Корсакова. 2014;114(2):37-41. 
  7. Özdin S, Böke Ö. Neutrophil/lymphocyte, platelet/lymphocyte and monocyte/lymphocyte ratios in different stages of schizophrenia. Psychiatry Res. 2019;271:131-135.  https://doi.org/10.1016/j.psychres.2018.11.043
  8. Wright-Jin EC, Gutmann DH. Microglia as dynamic cellular mediators of brain function. Trends in Molecular Medicine. 2017;25:967-979.  https://doi.org/10.1016/j.molmed.2019.08.013
  9. Kveštak D, Mihalić A, Jonjić S, et al. Innate lymphoid cells in neuroinflammation. Front Cell Neurosci. 2024;18:1364485. https://doi.org/10.3389/fncel.2024.1364485
  10. Trifu SC, Kohn B, Vlasie A, et al. Genetics of schizophrenia (Review). Exp Ther Med. 2020;20(4):3462-3468. https://doi.org/10.3892/etm.2020.8973
  11. Sekar A, Bialas AR, de Rivera H, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530(7589):177-183. 
  12. Kotsiri I, Resta P, Spyrantis A, et al. Viral Infections and Schizophrenia: A Comprehensive Review. Viruses. 2023;15(6):1345. https://doi.org/10.3390/v15061345
  13. Inyang B, Gondal FJ, Abah GA, et al. The Role of Childhood Trauma in Psychosis and Schizophrenia: A Systematic Review. Cureus. 2022;14(1):e21466. https://doi.org/10.7759/cureus.21466
  14. Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822-1832. https://doi.org/10.1038/s41591-019-0675-0
  15. Hogestyn JM, Mock DJ, Mayer-Proschel M. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural regeneration research. 2018;13(2):211-221.  https://doi.org/10.4103/1673-5374.226380
  16. Sun Y, Koyama Y, Shimada S. Inflammation From Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation? Front Aging Neurosci. 2022;14:903455. https://doi.org/10.3389/fnagi.2022.903455
  17. Hamad AA, Mustafa HM, Mohsein OA. Detection of the levels of immune cytokines (IL4, IL5, TNF-α) in school-age and preschoolers with an Ascaris lumbricoides infection. Journal of Parasit Dis. 2024;48(4):782-787.  https://doi.org/10.1007/s12639-024-01715-w
  18. Wanderley JLM, DaMatta RA, Barcinski MA. Apoptotic mimicry as a strategy for the establishment of parasitic infections: parasite-and host-derived phosphatidylserine as key molecule. Cell Communication and Signaling. 2020;18(1):10.  https://doi.org/10.1186/s12964-019-0482-8
  19. Rojas M, Restrepo-Jiménez P, Monsalve DM, et al. Molecular mimicry and autoimmunity. Autoimmun. 2018;95:100-123.  https://doi.org/10.1016/j.jaut.2018.10.012
  20. Vahabi M, Ghazanfari T, Sepehrnia S. Molecular mimicry, hyperactive immune system, and SARS-COV-2 are three prerequisites of the autoimmune disease triangle following COVID-19 infection. International Immunopharmacology. 2022;112:109183. https://doi.org/10.1016/j.intimp.2022.109183
  21. Ferat-Osorio E, Maldonado-García JL, Pavón L. How inflammation influences psychiatric disease. World J Psychiatry. 2024;14(3):342-349.  https://doi.org/10.5498/wjp.v14.i3.342
  22. Petitdemange C, Funderburg N, Zaunders J, et al. Editorial: Infectious Agent-Induced Chronic Immune Activation: Causes, Phenotypes, and Consequences. Front Immunol. 2021;12:740556. https://doi.org/10.3389/fimmu.2021.740556
  23. Wang X, Zhang L, Lei Y, et al. Meta-analysis of infectious agents and depression. Sci Rep. 2014;4:4530. https://doi.org/10.1038/srep04530
  24. Shuid AN, Jayusman PA, Shuid N, et al. Association between viral infections and risk of autistic disorder: an overview. Int J Environ Res Public Health. 2021;18(6):2817. https://doi.org/10.3390/ijerph18062817
  25. Кудрявцева Н.А., Чорбинская С.А., Девяткин А.В. и др. Особенности течения COVID-19 у госпитализированных больных. Кремлевская медицина. Клинический вестник. 2023;1:25-32.  https://doi.org/10.48612/cgma/bfu5-humt-m6dv
  26. Esshili A, Thabet S, Jemli A, et al. Toxoplasma gondii infection in schizophrenia and associated clinical features. Psychiatry Res. 2016;245:327-332.  https://doi.org/10.1016/j.psychres.2016.08.056
  27. Gras-Ozimek J, Ozimek W, Kozińska U, et al. Ascariasis and its relationship with selected psycho-neurological symptoms among children and adults in Poland. Pol Merkur Lekarski. 2019;46(274):165-171.  https://pubmed.ncbi.nlm.nih.gov/31099762/
  28. Chao PC, Chien WC, Chung CH, et al. Pinworm infections associated with risk of psychiatric disorders-A nationwide cohort study in Taiwan: Pinworm infections and psychiatric disorders. Compr Psychiatry. 2019;93:14-19.  https://doi.org/10.1016/j.comppsych.2019.02.002
  29. Severance E, Gressitt K, Stallings C, et al. Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder. NPJ Schizophr. 2016;2:16018. https://doi.org/10.1038/npjschz.2016.18
  30. Iovene MR, Bombace F, Maresca R, et al. Intestinal dysbiosis and yeast isolation in stool of subjects with autism spectrum disorders. Mycopathologia. 2017;182(3-4):349-363.  https://doi.org/10.1007/s11046-016-0068-6
  31. Okobi OE, Ayo-Farai O, Tran M, et al. The Impact of Infectious Diseases on Psychiatric Disorders: A Systematic Review. Cureus. 2024;16(8):e66323. https://doi.org/10.7759/cureus.66323
  32. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;Suppl 1(Suppl 1):S38-44.  https://doi.org/10.1111/j.1753-4887.2012.00493.x
  33. Guittar J, Shade A, Litchman E. Trait-based community assembly and succession of the infant gut microbiome. Nat Commun. 2019;10(1):512.  https://doi.org/10.1038/s41467-019-08377-w
  34. Jack AG, Martin JB, Caporaso JG, et al. Current understanding of the human microbiome. Nat Med. 2018;24(4):392-400.  https://doi.org/10.1038/nm.4517
  35. Катасонов А.Б. Кишечный микробиом как терапевтическая мишень при лечении депрессии и тревоги. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(11):129-135.  https://doi.org/10.17116/jnevro2021121111129
  36. Zhang X, Pan LY, Zhang Z, et al. Analysis of gut mycobiota in first-episode, drug-naïve Chinese patients with schizophrenia: A pilot study. Behav Brain Res. 2020;379:112374. https://doi.org/10.1016/j.bbr.2019.112374
  37. Zhu F, Ju Y, Wang W, et al. Metagenome-wide association of gut microbiome features for schizophrenia. Nat Commun. 2020;11:1612. https://doi.org/10.1038/s41467-020-15457-9
  38. Valles-Colomer M, Falony G, Darzi Y, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4:623-632.  https://doi.org/10.1038/s41564-018-0337-x
  39. Lin P, Ding B, Feng C, et al. Prevotella and Klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients with major depressive disorder. J Affect Disord. 2017;207:300-304.  https://doi.org/10.1016/j.jad.2016.09.051
  40. Ortega MA, Álvarez-Mon MA, García-Montero C, et al. Microbiota-gut-brain axis mechanisms in the complex network of bipolar disorders: Potential clinical implications and translational opportunities. Mol Psychiatry. 2023;28(7):2645-2673. https://doi.org/10.1038/s41380-023-01964-w
  41. Godos J, Currenti W, Angelino D, et al. Diet and mental health: Review of the recent updates on molecular mechanisms. Antioxidants. 2020;9:346.  https://doi.org/10.3390/antiox9040346
  42. Kandeel WA, Meguid NA, Bjørklund G, et al. Impact of Clostridium bacteria in children with autism spectrum disorder and their anthropometric measurements. J Mol Neurosci. 2020;70:897-907.  https://doi.org/10.1007/s12031-020-01482-2
  43. Plaza-Díaz J, Gómez-Fernández A, Chueca N, et al. Autism spectrum disorder (ASD) with and without mental regression is associated with changes in the fecal microbiota. Nutrients. 2019;11:337.  https://doi.org/10.3390/nu11020337
  44. Xiong RG, Li J, Cheng J, et al. The Role of Gut Microbiota in Anxiety, Depression, and Other Mental Disorders as Well as the Protective Effects of Dietary Components. Nutrients. 2023;15(14):3258. https://doi.org/10.3390/nu15143258
  45. Bhatia NY, Jalgaonkar MP, Hargude AB, et al. Gut-Brain Axis and Neurological Disorders-How Microbiomes Affect our Mental Health. CNS Neurol Disord Drug Targets. 2023;22:1008-1030. https://doi.org/10.2174/1871527321666220822172039
  46. Brandsma E, Kloosterhuis Niels J, Koster M, et al. A Proinflammatory Gut Microbiota Increases Systemic Inflammation and Accelerates Atherosclerosis. Circ Res. 2019;124(1):94-100.  https://doi.org/10.1161/circresaha.118.313234
  47. Segain JP, Raingeard de la Blétière DA, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: Implications for Crohn’s disease. Gut. 2000;47(3):397-403.  https://doi.org/10.1136/gut.47.3.397
  48. Muñoz-Cánoves P. Scheele C, Pedersen BK, Serrano AL. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 2013;280(17):4131-4148. https://doi.org/10.1111/febs.12338
  49. Sciancalepore M, Massaria G, Tramer F, et al. A preliminary study on the role of Piezo1 channels in myokine release from cultured mouse myotubes. Biochem Biophys Res Commun. 2022 Oct 1;623:148-153.  https://doi.org/10.1016/j.bbrc.2022.07.059
  50. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88:1379-1406. https://doi.org/10.1152/physrev.90100.2007
  51. Morres ID, Hatzigeorgiadis A, Stathi A, et al. Aerobic exercise for adult patients with major depressive disorder in mental health services: A systematic review and meta-analysis. Depress Anxiety. 2019;36:39-53.  https://doi.org/10.1002/da.22842
  52. Rethorst CD, Wipfli BM, Landers DM. The antidepressive effects of exercise: A meta-analysis of randomized trials. Sports Med. 2009;39:491-511.  https://doi.org/10.2165/00007256-200939060-00004
  53. Xie Y, Wu Z, Sun L, et al. The Effects and Mechanisms of Exercise on the Treatment of Depression. Front Psychiatry. 2021;12:705559. https://doi.org/10.3389/fpsyt.2021.705559
  54. Liu Y, Xu F, Liu S, et al. Significance of gastrointestinal tract in the therapeutic mechanisms of exercise in depression: Synchronism between brain and intestine through GBA. Prog Neuropsychopharmacol Biol Psychiatry. 2020;103:109971. https://doi.org/10.1016/j.pnpbp.2020.109971
  55. Phillips C, Fahimi A. Immune and Neuroprotective Effects of Physical Activity on the Brain in Depression. Front Neurosci. 2018;12:498.  https://doi.org/10.3389/fnins.2018.00498
  56. Krogh J, Hjorthøj C, Speyer H, et al. Exercise for patients with major depression: A systematic review with meta-analysis and trial sequential analysis. BMJ Open. 2017;7:e014820. https://doi.org/10.1136/bmjopen-2016-014820
  57. Greer TL, Grannemann BD, Chansard M, et al. Dose-dependent changes in cognitive function with exercise augmentation for major depression: results from the TREAD study. Eur Neuropsychopharmacol. 2015;25:248-256.  https://doi.org/10.1016/j.euroneuro.2014.10.001
  58. Sun M, Lanctot K, Herrmann N, et al. Exercise for cognitive symptoms in depression: a systematic review of interventional studies. Can J Psychiatry. 2018;63:115-128.  https://doi.org/10.1177/0706743717738493
  59. Nasstasia Y, Baker AL, Lewin TJ, et al. Differential treatment effects of an integrated motivational interviewing and exercise intervention on depressive symptom profiles and associated factors: a randomised controlled cross-over trial among youth with major depression. J Affect Disord. 2019;259:413-423.  https://doi.org/10.1016/j.jad.2019.08.035
  60. Miller KJ, Gonçalves-Bradley DC, Areerob P, et al. Comparative effectiveness of three exercise types to treat clinical depression in older adults: a systematic review and network meta-analysis of randomised controlled trials. Ageing Res Rev. 2020;58:100999. https://doi.org/10.1016/j.arr.2019.100999
  61. Klil-Drori S, Klil-Drori AJ, Pira S, et al. Exercise intervention for late-life depression: a meta-analysis. J Clin Psychiatry. 2020;81:19r12877. https://doi.org/10.4088/JCP.19r12877
  62. Huang J, Du C, Liu J, et al. Meta-Analysis on Intervention Effects of Physical Activities on Children and Adolescents with Autism. Int J Environ Res Public Health. 2020;17(6):1950. https://doi.org/10.3390/ijerph17061950
  63. Haghighi AH, Broughani S, Askari R, et al. Combined Physical Training Strategies Improve Physical Fitness, Behavior, and Social Skills of Autistic Children. J Autism Dev Disord. 2023;53(11):4271-4279. https://doi.org/10.1007/s10803-022-05731-8
  64. Liu IT, Lee WJ, Lin SY, et al. Therapeutic effects of exercise training on elderly patients with dementia: a randomized controlled trial. Arch Phys Med Rehabil. 2020;101:762-769.  https://doi.org/10.1016/j.apmr.2020.01.012
  65. Ryu J, Jung JH, Kim J, et al. Outdoor cycling improves clinical symptoms, cognition and objectively measured physical activity in patients with schizophrenia: a randomized controlled trial. J Psychiatr Res. 2020;120:144-153.  https://doi.org/10.1016/j.jpsychires.2019.10.015
  66. Suzuki K. Chronic Inflammation as an Immunological Abnormality and Effectiveness of Exercise. Biomolecules. 2019;9(6):223.  https://doi.org/10.3390/biom9060223
  67. Jodeiri Farshbaf M, Ghaedi K, Megraw TL, et al. Does PGC1α/FNDC5/BDNF Elicit the Beneficial Effects of Exercise on Neurodegenerative Disorders? Neuromol Med. 2016;18:1-15.  https://doi.org/10.1007/s12017-015-8370-x
  68. Nebiker L, Lichtenstein E, Minghetti A, et al. Moderating effects of exercise duration and intensity in neuromuscular vs. endurance exercise interventions for the treatment of depression: a meta-analytical review. Front Psychiatry. 2018;9:305.  https://doi.org/10.3389/fpsyt.2018.00305
  69. Yao BC, Meng LB, Hao ML, et al. Chronic stress: a critical risk factor for atherosclerosis. J Int Med Res. 2019;47(4):1429-1440. https://doi.org/10.1177/0300060519826820
  70. McEwen BS. Protective and damaging effects of stress mediators: Central role of the brain. Dialogues Clin Neurosci. 2006;8:367-381.  https://doi.org/10.31887/DCNS.2006.8.4/bmcewen
  71. Hannibal KE, Bishop MD. Chronic stress, cortisol dysfunction, and pain: A psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys Ther. 2014;94:1816-1825. https://doi.org/10.2522/ptj.20130597
  72. Kim IB, Lee JH, Park SC. The Relationship between Stress, Inflammation, and Depression. Biomedicines. 2022;10(8):1929. https://doi.org/10.3390/biomedicines10081929
  73. Rohleder N. Stress and inflammation — The need to address the gap in the transition between acute and chronic stress effects. Psychoneuroendocrinology. 2019;105:164-171.  https://doi.org/10.1016/j.psyneuen.2019.02.021
  74. Calcia MA, Bonsall DR, Bloomfield PS, et al. Stress and neuroinflammation: A systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016;233:1637-1650. https://doi.org/10.1007/s00213-016-4218-9
  75. Picca A, Calvani R, Coelho-Junior HJ, et al. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. Antioxidants. 2020;9:647.  https://doi.org/10.3390/antiox9080647
  76. Zhou JR, Xu Z, Jiang CL. Neuropeptide Y promotes TGF-β1 production in RAW264. 7 cells by activating PI3K pathway via Y1 receptor. Neurosci Bull. 2008;24:155-159.  https://doi.org/10.1007/s12264-008-0130-6
  77. Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. Jama. 2007;298(14):1685-1687.
  78. Fadel L, Dacic M, Fonda V, et al. Modulating glucocorticoid receptor actions in physiology and pathology: Insights from coregulators. Pharmacol Ther. 2023;251:108531. https://doi.org/10.1016/j.pharmthera.2023.108531
  79. Slopen N, Kubzansky LD, McLaughlin KA, et al. Childhood adversity and inflammatory processes in youth: A prospective study. Psychoneuroendocrinology. 2013;38:188-200.  https://doi.org/10.1016/j.psyneuen.2012.05.013
  80. Chiang JJ, Eisenberger NI, Seeman TE, et al. Negative and competitive social interactions are related to heightened proinflammatory cytokine activity. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:1878-1882. https://doi.org/10.1073/pnas.1120972109
  81. Steptoe A, Hamer M, Chida Y. The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain, Behavior, and Immunity. 2007;21:901-912.  https://doi.org/10.1016/j.bbi.2007.03.011
  82. Kendler KS, Gardner CO, Prescott CA. Toward a comprehensive developmental model for major depression in women. American Journal of Psychiatry. 2002;159:1133-1145. https://doi.org/10.1176/appi.ajp.159.7.1133
  83. Shi J, Fan J, Su Q, Yang Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front Endocrinol (Lausanne). 2019;10:703.  https://doi.org/10.3389/fendo.2019.00703
  84. Penninx BWJH, Lange SMM. Metabolic syndrome in psychiatric patients: overview, mechanisms, and implications. Dialogues Clin Neurosci. 2018;20(1):63-73.  https://doi.org/10.31887/dcns.2018.20.1/bpenninx
  85. Marijnissen RM, Vogelzangs N, Mulder ME, et al. Metabolic dysregulation and late-life depression: a prospective study. Psychol Med. 2017;47(6):1041-1052. https://doi.org/10.1017/s0033291716003196
  86. Sahay S, Pulvender P, Rami Reddy MVSR, et al. Metabolic insights into neuropsychiatric illnesses and ketogenic therapies: a transcriptomic view. International Journal of Molecular Sciences. 2024;25(15):8266. https://doi.org/10.3390/ijms25158266
  87. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519-550.  https://doi.org/10.1146/annurev.immunol.021908.132612
  88. Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014;3:465-476.  https://doi.org/10.1038/nrd4275
  89. Chan KL, Cathomas F, Russo SJ. Central and Peripheral Inflammation Link Metabolic Syndrome and Major Depressive Disorder. Physiology (Bethesda). 2019;34(2):123-133.  https://doi.org/10.1152/physiol.00047.2018
  90. Chan KL, Cathomas F, Russo SJ. Central and Peripheral Inflammation Link Metabolic Syndrome and Major Depressive Disorder. Physiology (Bethesda). 2019;34(2):123-133.  https://doi.org/10.1152/physiol.00047.2018
  91. Lainez NM, Coss D. Obesity, neuroinflammation, and reproductive function. Endocrinology. 2019;160(11):2719-2736. https://doi.org/10.1210/en.2019-00487
  92. Van Dyken P, Lacoste B. Impact of metabolic syndrome on neuroinflammation and the blood-brain barrier. Front Neurosci. 2018;12:930.  https://doi.org/10.3389/fnins.2018.00930
  93. Freyberg Z, Leboyer M, Penninx BWJH, et al. Neuroinflammation, metabolism, and psychiatric disorders. Front Psychiatry. 2022;13:1060948. https://doi.org/10.3389/fpsyt.2022.1060948
  94. Chourpiliadis C, Zeng Y, Lovik A, et al. Metabolic Profile and Long-Term Risk of Depression, Anxiety, and Stress-Related Disorders. JAMA Netw Open. 2024;7(4):e244525. https://doi.org/10.1001/jamanetworkopen.2024.4525
  95. Danan A, Westman EC, Saslow LR, et al. The Ketogenic Diet for Refractory Mental Illness: A Retrospective Analysis of 31 Inpatients. Front Psychiatry. 2022;13:951376. https://doi.org/10.3389/fpsyt.2022.951376
  96. Szendi I. The basics of metabolic psychiatry. Psychiatria Hungarica: A Magyar Pszichiatriai Tarsasag tudomanyos folyoirata. 2024;39(2):161-179. 

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.