Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Карпов Д.С.

ФГБНУ «Научный центр психического здоровья»

Мариловцева Е.В.

ФГБНУ «Научный центр психического здоровья»

Голимбет В.Е.

ФГБНУ «Научный центр психического здоровья»

Роль транскрипционных факторов в патогенетических процессах, связанных с шизофренией

Авторы:

Карпов Д.С., Мариловцева Е.В., Голимбет В.Е.

Подробнее об авторах

Прочитано: 830 раз


Как цитировать:

Карпов Д.С., Мариловцева Е.В., Голимбет В.Е. Роль транскрипционных факторов в патогенетических процессах, связанных с шизофренией. Журнал неврологии и психиатрии им. С.С. Корсакова. 2024;124(11):49‑54.
Karpov DS, Marilovtseva EV, Golimbet VE. A role of transcription factors in pathogenic processes associated with schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(11):49‑54. (In Russ.)
https://doi.org/10.17116/jnevro202412411149

Рекомендуем статьи по данной теме:
Ме­та­бо­ли­чес­кий син­дром и ан­тип­си­хо­ти­чес­кая те­ра­пия ши­зоф­ре­нии. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(11):165-170
Шес­ти­фак­тор­ная мо­дель PANSS. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2025;(2):28-34
Кли­ни­ко-им­му­но­ло­ги­чес­кие вза­имос­вя­зи у па­ци­ен­тов на ран­нем эта­пе ши­зоф­ре­нии. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2025;(2):35-42
Кли­ни­ко-пси­хо­па­то­ло­ги­чес­кие осо­бен­нос­ти ре­зис­тен­тной ши­зоф­ре­нии. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2025;(2):43-50

Литература / References:

  1. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388(10039): 86-97.  https://doi.org/10.1016/S0140-6736(15)01121-6
  2. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: A systematic analysis for the global burden of disease study 2019. Lancet Psychiatry. 2022;9(2):137-150.  https://doi.org/10.1016/S2215-0366(21)00395-3
  3. Fabbri C. Genetics in psychiatry: Methods, clinical applications and future perspectives. Psychiatry and Clinical Neurosciences Reports. 2022;1(2):e6.  https://doi.org/10.1002/pcn5.6
  4. Escudero I, Johnstone M. Genetics of schizophrenia. Curr Psychiatry Rep. 2014;16(11):502.  https://doi.org/10.1007/s11920-014-0502-8
  5. Jonas KG, Lencz T, Li K, et al. Schizophrenia polygenic risk score and 20-year course of illness in psychotic disorders. Transl Psychiatry. 2019;9(1):300.  https://doi.org/10.1038/s41398-019-0612-5
  6. Trubetskoy V, Pardiñas AF, Qi T, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604(7906):502-508.  https://doi.org/10.1038/s41586-022-04434-5
  7. Casella AM, Colantuoni C, Ament SA. Identifying enhancer properties associated with genetic risk for complex traits using regulome-wide association studies. PLoS Comput Biol. 2022;18(9):e1010430. https://doi.org/10.1371/journal.pcbi.1010430
  8. McAfee JC, Lee S, Lee J, et al. Systematic investigation of allelic regulatory activity of schizophrenia-associated common variants. Cell Genom. 2023;3(10):100404. https://doi.org/10.1016/j.xgen.2023.100404
  9. Uyehara CM, Apostolou E. 3d enhancer-promoter interactions and multi-connected hubs: Organizational principles and functional roles. Cell Rep. 2023;42(4):112068. https://doi.org/10.1016/j.celrep.2023.112068
  10. Horsfield JA. Full circle: A brief history of cohesin and the regulation of gene expression. FEBS J. 2023;290(7):1670-1687. https://doi.org/10.1111/febs.16362
  11. Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155(4):934-947.  https://doi.org/10.1016/j.cell.2013.09.053
  12. Vasileva AV, Gladkova MG, Ashniev GA, et al. Super-enhancers and their parts: From prediction efforts to pathognomonic status. Int J Mol Sci. 2024;25(6):3103. https://doi.org/10.3390/ijms25063103
  13. Zhang C, Li X, Zhao L, et al. Brain transcriptome-wide association study implicates novel risk genes underlying schizophrenia risk. Psychol Med. 2023;Apr 24:1-11.  https://doi.org/10.1017/S0033291723000417
  14. Hall LS, Medway CW, Pain O, et al. A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia. Hum Mol Genet. 2020;29(1):159-167.  https://doi.org/10.1093/hmg/ddz253
  15. Aslanpour S, Rosin JM, Balakrishnan A, et al. Ascl1 is required to specify a subset of ventromedial hypothalamic neurons. Development. 2020;147(10):dev180067. https://doi.org/10.1242/dev.180067
  16. Vue TY, Kollipara RK, Borromeo MD, et al. Ascl1 regulates neurodevelopmental transcription factors and cell cycle genes in brain tumors of glioma mouse models. Glia. 2020;68(12):2613-2630. https://doi.org/10.1002/glia.23873
  17. Roychoudhury K, Salomone J, Qin S, et al. Physical interactions between gsx2 and ascl1 balance progenitor expansion versus neurogenesis in the mouse lateral ganglionic eminence. Development. 2020;147(7):dev185348. https://doi.org/10.1242/dev.185348
  18. Batiuk MY, Tyler T, Dragicevic K, et al. Upper cortical layer-driven network impairment in schizophrenia. Sci Adv. 2022;8(41):eabn8367. https://doi.org/10.1126/sciadv.abn8367
  19. Abashkin DA, Karpov DS, Kurishev AO, et al. Ascl1 is involved in the pathogenesis of schizophrenia by regulation of genes related to cell proliferation, neuronal signature formation, and neuroplasticity. Int J Mol Sci. 2023;24(21):15746. https://doi.org/10.3390/ijms242115746
  20. Duclot F, Kabbaj M. The role of early growth response 1 (egr1) in brain plasticity and neuropsychiatric disorders. Front Behav Neurosci. 2017;11:35.  https://doi.org/10.3389/fnbeh.2017.00035
  21. Gandal MJ, Zhang P, Hadjimichael E, et al. Transcriptome-wide isoform-level dysregulation in asd, schizophrenia, and bipolar disorder. Science. 2018;362(6420):eaat8127. https://doi.org/10.1126/science.aat8127
  22. Pérez-Santiago J, Diez-Alarcia R, Callado LF, et al. A combined analysis of microarray gene expression studies of the human prefrontal cortex identifies genes implicated in schizophrenia. J Psychiatr Res. 2012;46(11):1464-1474. https://doi.org/10.1016/j.jpsychires.2012.08.005
  23. Ji Y, Cai M, Zhou Y, et al. Exploring functional dysconnectivity in schizophrenia: Alterations in eigenvector centrality mapping and insights into related genes from transcriptional profiles. Schizophrenia (Heidelb). 2024;10(1):37.  https://doi.org/10.1038/s41537-024-00457-1
  24. Araujo DJ, Toriumi K, Escamilla CO, et al. Foxp1 in forebrain pyramidal neurons controls gene expression required for spatial learning and synaptic plasticity. J Neurosci. 2017;37(45):10917-10931. https://doi.org/10.1523/JNEUROSCI.1005-17.2017
  25. Ingason A, Giegling I, Hartmann AM, et al. Expression analysis in a rat psychosis model identifies novel candidate genes validated in a large case-control sample of schizophrenia. Transl Psychiatry. 2015;5(10):e656. https://doi.org/10.1038/tp.2015.151
  26. Bacon C, Rappold GA. The distinct and overlapping phenotypic spectra of foxp1 and foxp2 in cognitive disorders. Hum Genet. 2012;131(11):1687-1698. https://doi.org/10.1007/s00439-012-1193-z
  27. Schreiweis C, Bornschein U, Burguière E, et al. Humanized foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proc Natl Acad Sci USA. 2014;111(39):14253-14258. https://doi.org/10.1073/pnas.1414542111
  28. Laitman BM, Asp L, Mariani JN, et al. The transcriptional activator kruppel-like factor-6 is required for cns myelination. PLoS Biol. 2016;14(5):e1002467. https://doi.org/10.1371/journal.pbio.1002467
  29. Wang Z, Mehra V, Simpson MT, et al. Klf6 and stat3 co-occupy regulatory DNA and functionally synergize to promote axon growth in cns neurons. Sci Rep. 2018;8(1):12565. https://doi.org/10.1038/s41598-018-31101-5
  30. Shimamoto-Mitsuyama C, Nakaya A, Esaki K, et al. Lipid pathology of the corpus callosum in schizophrenia and the potential role of abnormal gene regulatory networks with reduced microglial marker expression. Cereb Cortex. 2021;31(1):448-462.  https://doi.org/10.1093/cercor/bhaa236
  31. Dominguez MH, Ayoub AE, Rakic P. Pou-iii transcription factors (brn1, brn2, and oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. Cereb Cortex. 2013;23(11):2632-2643. https://doi.org/10.1093/cercor/bhs252
  32. McEvilly RJ, de Diaz MO, Schonemann MD, et al. Transcriptional regulation of cortical neuron migration by pou domain factors. Science. 2002;295(5559):1528-1532. https://doi.org/10.1126/science.1067132
  33. Nasu M, Abe Y, Matsushima A, et al. Deficient maternal behavior in multiparous pou3f2 mice is associated with an impaired exploratory activity. Behav Brain Res. 2022;427:113846. https://doi.org/10.1016/j.bbr.2022.113846
  34. Chen C, Meng Q, Xia Y, et al. The transcription factor pou3f2 regulates a gene coexpression network in brain tissue from patients with psychiatric disorders. Sci Transl Med. 2018;10(472):eaat8178. https://doi.org/10.1126/scitranslmed.aat8178
  35. Ding C, Zhang C, Kopp R, et al. Transcription factor pou3f2 regulates trim8 expression contributing to cellular functions implicated in schizophrenia. Mol Psychiatry. 2021;26(7):3444-3460. https://doi.org/10.1038/s41380-020-00877-2
  36. Li Y, You QL, Zhang SR, et al. Satb2 ablation impairs hippocampus-based long-term spatial memory and short-term working memory and immediate early genes (iegs)-mediated hippocampal synaptic plasticity. Mol Neurobiol. 2017. https://doi.org/10.1007/s12035-017-0531-5
  37. Harb K, Magrinelli E, Nicolas CS, et al. Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications. Elife. 2016;5:e09531. https://doi.org/10.7554/eLife.09531
  38. Whitton L, Apostolova G, Rieder D, et al. Genes regulated by satb2 during neurodevelopment contribute to schizophrenia and educational attainment. PLoS Genet. 2018;14(7):e1007515. https://doi.org/10.1371/journal.pgen.1007515
  39. Badowska DM, Brzózka MM, Kannaiyan N, et al. Modulation of cognition and neuronal plasticity in gain- and loss-of-function mouse models of the schizophrenia risk gene tcf4. Transl Psychiatry. 2020;10(1):343.  https://doi.org/10.1038/s41398-020-01026-7
  40. Xia H, Jahr FM, Kim NK, et al. Building a schizophrenia genetic network: Transcription factor 4 regulates genes involved in neuronal development and schizophrenia risk. Hum Mol Genet. 2018;27(18):3246-3256. https://doi.org/10.1093/hmg/ddy222
  41. Wang Y, Liu L, Lin M. Psychiatric risk gene transcription factor 4 preferentially regulates cortical interneuron neurogenesis during early brain development. J Biomed Res. 2022;36(4):242-254.  https://doi.org/10.7555/JBR.36.20220074
  42. Page SC, Hamersky GR, Gallo RA, et al. The schizophrenia- and autism-associated gene, transcription factor 4 regulates the columnar distribution of layer 2/3 prefrontal pyramidal neurons in an activity-dependent manner. Mol Psychiatry. 2018;23(2):304-315.  https://doi.org/10.1038/mp.2017.37
  43. Forrest MP, Hill MJ, Kavanagh DH, et al. The psychiatric risk gene transcription factor 4 (tcf4) regulates neurodevelopmental pathways associated with schizophrenia, autism, and intellectual disability. Schizophr Bull. 2018;44(5):1100-1110. https://doi.org/10.1093/schbul/sbx164
  44. Wang D, Liu S, Warrell J, et al. Comprehensive functional genomic resource and integrative model for the human brain. Science. 2018;362(6420):eaat8464. https://doi.org/10.1126/science.aat8464

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.