Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Скрипченко Н.В.

ФГБУ «Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства»;
ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России

Скрипченко Е.Ю.

ФГБУ «Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства»;
ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России

Жданов К.В.

ФГБУ «Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства»

Алексеева Л.А.

ФГБУ «Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства»

Вербенко П.С.

ФГБУ «Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства»

Суслопарова П.С.

ФГБУ «Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства»;
ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России

Патогенетические аспекты образования аутоантител к структурам центральной нервной системы при энцефалитах

Авторы:

Скрипченко Н.В., Скрипченко Е.Ю., Жданов К.В., Алексеева Л.А., Вербенко П.С., Суслопарова П.С.

Подробнее об авторах

Прочитано: 646 раз


Как цитировать:

Скрипченко Н.В., Скрипченко Е.Ю., Жданов К.В., Алексеева Л.А., Вербенко П.С., Суслопарова П.С. Патогенетические аспекты образования аутоантител к структурам центральной нервной системы при энцефалитах. Журнал неврологии и психиатрии им. С.С. Корсакова. 2025;125(4):53‑58.
Skripchenko NV, Skripchenko EYu, Zhdanov KV, Alekseeva LA, Verbenko PS, Susloparova PS. Pathogenetic aspects of autoantibody formation to central nervous system structures in patients with encephalitis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(4):53‑58. (In Russ.)
https://doi.org/10.17116/jnevro202512504153

Рекомендуем статьи по данной теме:
Эпи­де­ми­оло­гия су­ици­даль­но­го по­ве­де­ния у де­тей и под­рос­тков во всем ми­ре. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. Спец­вы­пус­ки. 2024;(11-2):16-26
Диаг­нос­ти­ка ней­ро­ин­фек­ций у де­тей. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. Спец­вы­пус­ки. 2024;(11-2):51-59
Сов­ре­мен­ные под­хо­ды к ди­аг­нос­ти­ке и ле­че­нию син­дро­ма ве­ге­та­тив­ной дис­фун­кции у де­тей. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. Спец­вы­пус­ки. 2024;(11-2):66-75
Изу­че­ние воз­мож­нос­ти при­ме­не­ния ме­то­дик для оцен­ки расстройств раз­ви­тия экспрес­сив­ной ре­чи у де­тей 3—6 лет. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. Спец­вы­пус­ки. 2024;(11-2):103-109
Проб­ле­мы ока­за­ния сто­ма­то­ло­ги­чес­кий по­мо­щи дет­ско­му на­се­ле­нию на при­ме­ре г. Ча­па­евск Са­мар­ской об­лас­ти. Опе­ра­тив­ная хи­рур­гия и кли­ни­чес­кая ана­то­мия (Пи­ро­гов­ский на­уч­ный жур­нал). 2024;(4):35-42
Сов­ре­мен­ный взгляд на эти­оло­гию жел­чно­ка­мен­ной бо­лез­ни у де­тей. До­ка­за­тель­ная гас­тро­эн­те­ро­ло­гия. 2024;(4):59-68

Литература / References:

  1. Masciocchi S, Businaro P, Scaranzin S, et al. General features, pathogenesis, and laboratory diagnostics of autoimmune encephalitis. Crit Rev Clin Lab Sci. 2023;61(1):45-69.  https://doi.org/10.1080/10408363.2023.2247482
  2. Полонский Е.Л., Скулябин Д.И., Лапин С.В. и др. Полиморфизм аутоиммунного энцефалита. Анналы клинической и экспериментальной неврологии. 2019;13(2):79-91.  https://doi.org/10.25692/ACEN.2019.2.9
  3. Dubey D, Pittock SJ, Kelly CR, et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol. 2018;83:166-177.  https://doi.org/10.1002/ana.25131
  4. De Bruijn MAAM, Bruijstens AL, Bastiaansen AEM, et al; CHANCE Study Group. Pediatric autoimmune encephalitis: recognition and diagnosis. Neurolo Neuroimmunol Neuroinflammation. 2020;7(3):e682. https://doi.org/10.1212/NXI.0000000000000682
  5. Boucher A, Herrmann JL, Morand P, et al. Epidemiology of infectious encephalitis causes in 2016. Méd Malad Infect. 2017;47:221-235.  https://doi.org/10.1016/j.medmal.2017.02.003
  6. Харитонова Л.А., Исрафилова О.Е. Опыт применения циклоферона в комплексной терапии рекуррентных инфекций респираторного тракта у детей. Российский вестник перинатологии и педиатрии. 2018;63(3):98-104.  https://doi.org/10.21508/1027-4065-2018-63-3-98-104
  7. Романцов М.Г., Горячева Л.Г., Коваленко А.Л. Циклоферон — опыт применения в детской практике. Детские инфекции. 2008;(4):62-86. 
  8. Hor JY, Asgari N, Nakashima I, et al. Epidemiology of Neuromyelitis Optica Spectrum Disorder and Its Prevalence and Incidence Worldwide. Front Neurol. 2020;11:501.  https://doi.org/10.3389/fneur.2020.00501
  9. Hilado M, Banh M, Homans J, et al. Pediatric Autoimmune Encephalitis Following COVID-19 Infection. J Child Neurol. 2022;37(4):268-272.  https://doi.org/10.1177/08830738211069814
  10. Белозеров Е.С., Буланьков Ю.И., Васильев В.В. и др. Руководство по инфекционным болезням. Книга 1. СПб.: Издательство Фолиант. 2011.
  11. Скрипченко Н.В., Лобзин Ю.В., Войтенков В.Б. и др. Инновации в ведении нейроинфекций у детей. Детские инфекции. 2017;16(3):5-9.  https://doi.org/10.22627/2072-8107-2017-16-3-5-9
  12. Yadav P, Chakraborty P, Jha NK, et al. Molecular Mechanism and Role of Japanese Encephalitis Virus Infection in Central Nervous System-Mediated Diseases. Viruses. 2022;14(12):2686.
  13. Ford B, McDonald A, Srinivasan S. Anti-NMDA receptor encephalitis: a case study and illness overview. Drugs in Context. 2019;8:212589. https://doi.org/10.7573/dic.212589
  14. Белозеров Е.С., Буланьков Ю.И., Васильев В.В. и др. Руководство по инфекционным болезням. Книга 2. СПб.: Издательство Фолиант. 2011.
  15. Hardy D. Autoimmune Encephalitis in Children. Ped Neurol. 2022;132:56-66.  https://doi.org/10.1016/j.pediatrneurol.2022.05.004
  16. Li Q, Fu N, Han Y, et al. Pediatric autoimmune encephalitis and its relationship with infection. Ped Neurol. 2021;120:27-32.  https://doi.org/10.1016/j.pediatrneurol.2021.04.001
  17. Stawicka E. Anti-NMDA receptor encephalitis — the narrative review of literature with particular regard to pediatric population. Psychiatr Pol. 2022;56(6):1315-1326. https://doi.org/10.12740/pp/142990
  18. Armangue T, Leypoldt F, Málaga I, et al. Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann Neurol. 2014;75(2):317-323.  https://doi.org/10.1002/ana.24083
  19. Chavez-Castillo M, Ruiz-Garcia M, Herrera-Mora P. Characterization and outcomes of epileptic seizures in Mexican pediatric patients with anti-N-methyl-D-aspartate receptor encephalitis. Cureus. 2020;12(5):e8211. https://doi.org/10.7759/cureus.8211
  20. Armangue T, Spatola M, Vlagea A, et al; Spanish Herpes Simplex Encephalitis Study Group. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: A prospective observational study and retrospective analysis. The Lancet Neurology. 2018;17:760-772.  https://doi.org/10.1016/S1474-4422(18)30244-8
  21. Скрипченко Н.В., Иванова М.В., Вильниц А.А. и др. Нейроинфекции у детей: тенденции и перспективы. Российский вестник перинатологии и педиатрии. 2016;61(4):9-22.  https://doi.org/10.21508/1027-4065-2016-61-4-9-22
  22. Железникова Г.Ф., Скрипченко Н.В., Иванова Г.П. и др. Герпес-вирусы и рассеянный склероз. Журнал неврологии и психиатрии им. С.С. Корсакова. 2016;116(9):133-143.  https://doi.org/10.17116/jnevro201611691133-143
  23. Linnoila JJ, Binnicker MJ, Majed M, et al. CSF herpes virus and autoantibody profiles in the evaluation of encephalitis. Neurol Neuroimmunol Neuroinflammation. 2016;3(4):e245. https://doi.org/10.1212/nxi.0000000000000245
  24. Lopalco PL, Biasio LR. Japanese Encephalitis can be devastating. Ann Igiene. 2024;36(3):370-375. 
  25. Zhang L, Zhang L, Li F, et al. When herpes simplex virus encephalitis meets antiviral innate immunity. Front Immunol. 2023;14:1118236. https://doi.org/10.3389/fimmu.2023.1118236
  26. Prüss H, Finke C, Höltje M, et al. N-methyl-D-aspartate receptor antibodies in herpes simplex encephalitis. Ann Neurol. 2012;72(6):902-911.  https://doi.org/10.1002/ana.23689
  27. Berek K, Beer R, Grams A, et al. Caspr2 antibodies in herpes simplex encephalitis: An extension of the spectrum of virus induced autoimmunity? — A case report. BMC Neurol. 2022;22(1):131.  https://doi.org/10.1186/s12883-022-02637-x
  28. Hacohen Y, Deiva K, Pettingill P, et al. N‐methyl‐D‐aspartate receptor antibodies in post-herpes simplex virus encephalitis neurological relapse. Mov Disord. 2014;29(1):90-96.  https://doi.org/10.1002/mds.25626
  29. Handoko M, Hong W, Espineli E, et al. Autoimmune Glial Fibrillary Acidic Protein Astrocytopathy Following Herpes Simplex Virus Encephalitis in a Pediatric Patient. Ped Neurol. 2019;98:85-86.  https://doi.org/10.1016/j.pediatrneurol.2019.05.010
  30. Li J, Xu Y, Ren H, et al. Autoimmune GFAP astrocytopathy after viral encephalitis: A case report. Mult Scler Rel Disord. 2018;21:84-87.  https://doi.org/10.1016/j.msard.2018.02.020
  31. Mohammad SS, Sinclair K, Pillai S, et al. Herpes simplex encephalitis relapse with chorea is associated with autoantibodies to N-Methyl-D-aspartate receptor or dopamine-2 receptor. Mov Disord. 2014;29(1):117-122.  https://doi.org/10.1002/mds.25623
  32. Cleaver J, Jeffery K, Klenerman P, et al. The immunobiology of herpes simplex virus encephalitis and post-viral autoimmunity. Brain. 2024;147(4):1130-1148. https://doi.org/10.1093/brain/awad419
  33. George BP, Schneider EB, Venkatesan A. Encephalitis hospitalization rates and inpatient mortality in the United States, 2000-2010. PLoS One. 2014;9(9):e104169. https://doi.org/10.1371/journal.pone.0104169
  34. Nabizadeh F, Balabandian M, Sodeifian F, et al. Autoimmune encephalitis associated with COVID-19: A systematic review. Mult Scler Rel Disord. 2022;62:103795. https://doi.org/10.1016/j.msard.2022.103795
  35. Sánchez-Morales AE, Urrutia-Osorio M, Camacho-Mendoza E, et al. Neurological manifestations temporally associated with SARS-CoV-2 infection in pediatric patients in Mexico. Child’s Nerv Syst. 2021;37(7):2305-2312. https://doi.org/10.1007/s00381-021-05104-z
  36. Bhagat R, Kwiecinska B, Smith N, et al. New-Onset Seizure With Possible Limbic Encephalitis in a Patient With COVID-19 Infection: A Case Report and Review. J Invest Med High Impact Case Rep. 2021;9:2324709620986302. https://doi.org/10.1177/2324709620986302
  37. Liu K, Pan M, Xiao Z, et al. Neurological manifestations of the coronavirus (SARS-CoV-2) pandemic 2019-2020. J Neurol Neurosurg Psychiatry. 2020;91(6):669-670.  https://doi.org/10.1136/jnnp-2020-323177
  38. Guilmot A, Maldonado Slootjes S, Sellimi A, et al. Immune-mediated neurological syndromes in SARS-CoV-2-infected patients. J Neurol. 2021;268(3):751-757.  https://doi.org/10.1007/s00415-020-10108-x
  39. Achar A, Ghosh C. COVID-19-Associated Neurological Disorders: The Potential Route of CNS Invasion and Blood-Brain Relevance. Cells. 2020;9(11):2360. https://doi.org/10.3390/cells9112360
  40. Dhillon PS, Dineen RA, Morris H, et al. Neurological Disorders Associated With COVID-19 Hospital Admissions: Experience of a Single Tertiary Healthcare Center. Front Neurol. 2021;12:640017. https://doi.org/10.3389/fneur.2021.640017
  41. Vasilevska V, Guest PC, Szardenings M, et al. Possible temporal relationship between SARS-CoV-2 infection and anti-NMDA receptor encephalitis: a meta-analysis. Transl Psychiatry. 2024;14(1):139.  https://doi.org/10.1038/s41398-024-02831-0
  42. Linnoila JJ, Rosenfeld MR, Dalmau J. Neuronal surface antibody-mediated autoimmune encephalitis. Semin Neurol. 2014;34(4):458-466.  https://doi.org/10.1055/s-0034-1390394
  43. Klein da Costa B, Brant de F, et al. Unraveling B lymphocytes in CNS inflammatory diseases: Distinct mechanisms and treatment targets. Neurology. 2020;95(16):733-744.  https://doi.org/10.1212/wnl.0000000000010789
  44. Castellazzi M, Contini C, Tamborino C, et al. Epstein-Barr virus-specific intrathecal oligoclonal IgG production in relapsing-remitting multiple sclerosis is limited to a subset of patients and is composed of low-affinity antibodies. J Neuroinflamm. 2014;11(8):188.  https://doi.org/10.1186/s12974-014-0188-1
  45. Lindsey JW. Antibodies to the Epstein-Barr virus proteins BFRF3 and BRRF2 cross-react with human proteins. J Neuroinflamm.2017;310:131-134.  https://doi.org/10.1016/j.jneuroim.2017.07.013
  46. Prüss H. Postviral autoimmune encephalitis: manifestations in children and adults. Curr Opin Neurol. 2017;30(3):327-333.  https://doi.org/10.1097/wco.0000000000000445
  47. Pierson ER, Wagner CA, Goverman JM. The contribution of neutrophils to CNS autoimmunity. Clin Immunol. 2018;189:23-28.  https://doi.org/10.1016/j.clim.2016.06.017
  48. Liu B, Ai P, Zheng D, et al. Cerebrospinal fluid pentraxin 3 and CD40 ligand in anti-N-menthyl-d-aspartate receptor encephalitis. Cerebrospinal fluid pentraxin 3 and CD40 ligand in antiN-menthyl-d-aspartate receptor encephalitis. J Neuroimmunol. 2018;315:40-44.  https://doi.org/10.1016/j.jneuroim.2017.11.016
  49. Mueller SH, Färber A, Prüss H, et al; German Network for Research on Autoimmune Encephalitis (GENERATE). Genetic predisposition in anti-LGI1 and anti-NMDA receptor encephalitis. Ann Neurol. 2018;83(4):863-869.  https://doi.org/10.1002/ana.25216
  50. Binks S, Varley J, Lee W, et al. Distinct HLA associations of LGI1 and CASPR2-antibody diseases. Brain. 2018;141(8):2263-2271. https://doi.org/10.1093/brain/awy109
  51. Shu Y, Qiu W, Zheng J, et al. HLA class II allele DRB1*16:02 is associated with anti-NMDAR encephalitis. J Neurol Neurosurg Psychiatry. 2019;90(6):652-658.  https://doi.org/10.1136/jnnp-2018-319714
  52. Piquet AL, Clardy SL. Infection, Immunodeficiency, and Inflammatory Diseases in Autoimmune Neurology. Semin Neurol. 2018;38(3):379-391.  https://doi.org/10.1055/s-0038-1660820
  53. Venkatesan A, Michael BD, et al. Acute encephalitis in immunocompetent adults. The Lancet. 2019;393:702-716.  https://doi.org/10.1016/s0140-6736(18)32526-1
  54. Бухалко М.А., Скрипченко Н.В., Скрипченко Е.Ю. и др. Значение полиморфизма гена рецептора витамина D в патологии человека. Российский вестник перинатологии и педиатрии. 2017;62(6):23-28.  https://doi.org/10.21508/1027-4065-2017-62-6-23-28
  55. Day GS, Yarbrough MY, Körtvelyessy P, et al. Prospective Quantification of CSF Biomarkers in Antibody-Mediated Encephalitis. Neurology. 2021;96(20):e2546-e2557. https://doi.org/10.1212/wnl.0000000000011937
  56. Zhang H, Therriault J, Kang MS, et al. Alzheimer’s Disease Neuroimaging Initiative. Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimer’s disease. Alzh Res Ther. 2018;10(1):80.  https://doi.org/10.1186/s13195-018-0407-6
  57. Chen J, Ding Y, Zheng D, et al. Elevation of YKL-40 in the CSF of Anti-NMDAR Encephalitis Patients Is Associated With Poor Prognosis. Front Neurol. 2018;9:727.  https://doi.org/10.3389/fneur.2018.00727
  58. Peng Y, Liu B, Pei S, et al. Higher CSF Levels of NLRP3 Inflammasome Is Associated With Poor Prognosis of Anti-N-methyl-D-Aspartate Receptor Encephalitis. Front Immunol. 2019;10:905.  https://doi.org/10.3389/fimmu.2019.00905
  59. Ciano-Petersen NL, Cabezudo-García P, Muñiz-Castrillo S, et al. Current Status of Biomarkers in Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Int J Mol Sci. 2021;22(23):13127. https://doi.org/10.3390/ijms222313127
  60. Алексеева Л.А., Железникова Г.Ф., Горелик Е.Ю. и др. Цитокины и нейроспецифические белки при вирусных энцефалитах и судорожном синдроме у детей. II. Судорожный синдром. Инфекция и иммунитет. 2021;11(3):433-446.  https://doi.org/10.15789/2220-7619-CAN-1449
  61. Скрипченко Н.В., Алексеева Л.А., Железникова Г.Ф. Ликвор и его клиническое значение при инфекционных заболеваниях нервной системы. Педиатр. 2011;2(3):21-31. 
  62. Leypoldt F, Höftberger R, Titulaer MJ, et al. Investigations on CXCL13 in anti-N-methyl-D-aspartate receptor encephalitis: a potential biomarker of treatment response. JAMA Neurology. 2015;72(2):180-186.  https://doi.org/10.1001/jamaneurol.2014.2956

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.