The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Nemkova S.A.

Pirogov Russian National Research Medical University

Modern approaches to diagnosis and treatment of postinfectious asthenic syndrome in children

Authors:

Nemkova S.A.

More about the authors

Read: 905 times


To cite this article:

Nemkova SA. Modern approaches to diagnosis and treatment of postinfectious asthenic syndrome in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(4):42‑52. (In Russ.)
https://doi.org/10.17116/jnevro202512504142

References:

  1. Chutko LS. Nevrozy u detej. M.: Medpress-Inform. 2016. (In Russ.).
  2. Chutko LS, Surushkina SYu, Nikishena IS. Asthenic disorders in children: Clinical heterogeneity and differentiated therapy. S.S. Korsakov Journal of Neurology and Psychiatry. 2014;114(12):99-103. (In Russ.). https://doi.org/10.17116/jnevro201411412199-103
  3. Karkashadze GA, Namazova-Baranova LS, Gevorkyan AK, et al. Outpatient referral for pediatric specialized neurological care: structure and main patterns. Pediatricheskaya farmakologiya. 2014;11(5):82-92. (In Russ.).
  4. Lytvin L. Astenic syndrome in children. Baby Health. 2012;5(32):7-11. 
  5. Gindikin VYa. Somatogennye i somatoformnye rasstrojstva (klinika, dif- ferencial’naya diagnostika, lechenie). M.: Triada-H. 2000. (In Russ.).
  6. Nemkova SA. Modern principles of treatment of postinfectious asthenic conditions in children. Russkij Medicinskij Zhurnal. 2016;6:368-372. (In Russ.).
  7. Nemkova SA. Neurological aspects of the consequences of COVID-19 in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(4):23-30. (In Russ.). https://doi.org/10.17116/jnevro202212204123
  8. Pavelkina VF. Kliniko-patogeneticheskie aspekty endogennoj intoksikacii i ee korrekcii pri zabolevaniyah virusnoj i bakterial’noj etiologii. Avtoref. diss. … d-ra. med. nauk. M. 2010. (In Russ.).
  9. Rimes KA, Goodman R, Hotopf M, et al. Incidence, prognosis, and risk factors for fatigue and chronic fatigue syndrome in adolescents: a prospective community study. Pediatrics. 2007;119(3):45-51. 
  10. Skripchenko NV, Vil’nic AA, Ivanova MV, et al. Meningococcal infection in children. Epidemiologiya i Infekcionnye Bolezni. 2005;5:20-27. (In Russ.).
  11. Lembryk IS. Asthenia in children with chronic viral hepatitis. Zdorovie Rebenka. 2015;1(60):25-28. (In Russ.).
  12. Zadorozhnaya VI. The role of enteroviruses in the pathology of the nervous system. S.S. Korsakov Journal of Neurology and Psychiatry. 1997;97(12):85-89. (In Russ.).
  13. Martynenko IN, Leshchinskaya EV, Leont’eva IYa, et al. Outcomes of acute viral encephalitis in children according to catamnestic observation data. S.S. Korsakov Journal of Neurology and Psychiatry. 1991;91(2):37-40. (In Russ.).
  14. Ladodo KS. Respiratornye virusnye infekcii i porazhenie nervnoj sistemy u detej. M.: Medicina. 1972. (In Russ.).
  15. Kiklevich VT. Mixed respiratory viral infection in children. Zhurnal infekcionnoj patologii. 1998;5(1):33-34. (In Russ.).
  16. Martynov YuS. Porazhenie nervnoj sistemy pri grippe i grippopodobnyh zabolevaniyah. M.: Medicina. 1970. (In Russ.).
  17. Levchenko NV, Bogomolova IK, Chavanina SA. The results of catamnestic follow-up of children after influenza A/H1N1/09. Zabajkal’skij medicinskij vestnik. 2014;2:23-27. (In Russ.).
  18. Nemkova SA. Modern approaches to the treatment of postinfectious asthenia in children and adolescents. Pediatriya. Zhurnal im. G.N. Speranskogo. 2016;95(6):199-204. (In Russ.).
  19. Tarasova NYu. Sravnitel’naya harakteristika psihoemocional’nyh narushenij pri nekotoryh virusnyh zabolevaniyah: Avtoref. ... dis. kand. med. nauk. M. 2002. (In Russ.).
  20. Nemkova SA. Modern approaches to diagnosis and treatment of syndrome of autonomic dysfunction in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(11-2):66-75. (In Russ.). https://doi.org/10.17116/jnevro202412411266
  21. Isaev DN. Psihopatologiya detskogo vozrasta. SPb: SpecLit. 2001. (In Russ.).
  22. Gol’denberg MA, Solodkaya VA. Izmeneniya psihiki pri svoeobraznoj forme nejroinfekcii. S.S. Korsakov Journal of Neurology and Psychiatry. 1984;84(5):10-15. (In Russ.).
  23. Butorina NE, Retyunskij KYu. Zatyazhnye sistemnye rasstrojstva v detskom vozraste. Ekaterinburg: Ekspress-dizajn. 2005. (In Russ.).
  24. Makarov IV. Klinicheskaya psihiatriya detskogo i podrostkovogo vozrasta. SPb: Nauka i tekhnika. 2013. (In Russ.).
  25. Nijhof SL, Maijer K, Bleijenberg G, et al. Adolescent chronic fatigue syndrome: prevalence, incidence, and morbidity. Pediatrics. 2011;127(5):1169-1175.
  26. Arcimovich NG. Chronic fatigue syndrome in children. Ekologiya i zhizn’. 2001;2:78-80. (In Russ.).
  27. Institute of Medicine; Board on the Health of Select Populations; Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Beyond myalgic encephalomyelitis/chronic fatigue syndrome redefining an illness (2015). Accessed 2021 Aug 23. Available from: https://www.nap.edu/catalog/19012/beyond-myalgic-encephalomyelitischronic-fatigue-syndrome-redefining-an-illness
  28. Osobennosti klinicheskih proyavlenij i lecheniya zabolevaniya, vyzvannogo novoj koronavirusnoj infekciej (COVID-19) u detej. Metodicheskie rekomendacii, versiya 2. Ministerstvo Zdravoohraneniya RF. 2020. (In Russ.).
  29. Gugliandolo A, Chiricosta L, Calcaterra V, et al. SARS-CoV-2 infected pediatric cerebral cortical neurons: transcriptomic analysis and potential role of toll-like receptors in pathogenesis. Int J Mol Sci. 2021;22:8059.
  30. Meinhardt J, Radke J, Heppner FL. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24:168-175. 
  31. Marshall M. How COVID-19 can damage the brain. Nature. 2020;585:342-343. 
  32. Yang Y, Shen C, Li J, et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J Allergy Clin Immunol. 2020;146(1):119-127.  https://doi.org/10.1016/j.jaci.2020.04.027
  33. Voronina TA. Antioxidants/antihypoxants are the missing puzzle of effective pathogenetic therapy for patients with COVID-19. Infekcionnye bolezni. 2020;18(2):97-102. (In Russ.).
  34. Shchul’kin AV, Filimonova AA. The role of free radical oxidation, hypoxia and their correction in the pathogenesis of COVID-19. Terapiya. 2020;5(39):187-194. (In Russ.).
  35. Ludvigsson JF. Case report and systematic review suggest that children may experience similar long‐term effects to adults after clinical COVID‐19. Acta Paediatr. 2021;110(3):914‐921.  https://doi.org/10.1111/apa.15673
  36. COVID-19 rapid guideline: managing the long-term effects of COVID-19. NICE guideline December 2020. https://www.nice.org.uk/guidance/ng188
  37. Buonsenso D, Munblit D, De Rose C, et al. Preliminary evidence on long COVID in children. Acta Paediatr. 2021;110(7):2208-2211. https://doi.org/10.1101/2021.01.23.21250375
  38. Miller F, Nguyen V, Navaratnam AMD, et al. Prevalence of persistent symptoms in children during the COVID-19 pandemic: evidence from a household cohort study in England and Wales. BMJ. 2021;34(7):34-39.  https://doi.org/10.1101/2021.05.28.21257602
  39. Molteni E, Sudre CH, Canas LS, et al. Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2. Lancet Child Adolesc Health. 2021;5(10):708-718.  https://doi.org/10.1016/S2352-4642(21)00198-X
  40. Stephenson T, Shafran R, De Stavola B, et al. Long COVID — the physical and mental health of children and non-hospitalised young people 3 months after SARS-CoV-2 infection; a national matched cohort study (The CLoCk) Study. BMJ. 2021;11(8):e052838. https://doi.org/10.21203/rs.3.rs-798316/v1
  41. Brackel CLH, Lap CR, Buddingh EP, et al. Pediatric long‐COVID: An overlooked phenomenon? Ped Pulm. 2021;56(8):2495-2502.
  42. Buonsenso D, Espuny Pujol F, Munblit D, et al. Clinical characteristics, activity levels and mental health problems in children with long COVID: a survey of 510 children. Future Microbiol. 2022;17(8):577-588.  https://doi.org/10.2217/fmb-2021-0285
  43. Consiglio R, Cotugno N, Sardh F. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19. Cell. 2020;183(4):968-981. 
  44. Blomberg B, Mohn KG, Brokstad KA, et al. Long COVID in a prospective cohort of home-isolated patients. Nat Med. 2021;27(9):1607-1613. https://doi.org/10.1038/s41591-021-01433-3
  45. Smane L, Stars I, Pucuka Z, et al. Persistent clinical features in paediatric patients after SARS-CoV-2 virological recovery: a retrospective population-based cohort study from a single centre in Latvia. BMJ Paediatr Open. 2020;4:e000905. https://doi.org/10.1136/bmjpo-2020-000905
  46. Ivanova MV, Skripchenko NV, Matyunina NV, et al. New possibilities of neuroprotective therapy for serous meningitis in children. Zhurnal infektologii. 2014;6(2):59-64. (In Russ.).
  47. Zavadenko NN, Nemkova SA. Narusheniya razvitiya i kognitivnye disfunkcii u detej s nevrologicheskimi zabolevaniyami. M.: MedpressInform. 2016. (In Russ.).
  48. Malyavin AG, Gorelov AV, Vasenina EE, et al. Postinfectious asthenia: modern approaches to therapy. The Russian Scientific Medical Society of Therapists and the National Association of Infectious Diseases Specialists named after academician of the RAS Pokrovsky VI. Expert Council Resolution. Russian Journal of Preventive Medicine. 2023;26(9):88-97. (In Russ.). https://doi.org/10.17116/profmed20232609188
  49. Voronina TA. Mexidol: the spectrum of pharmacological effects. S.S. Korsakov Journal of Neurology and Psychiatry. 2012;112(12):86-90. (In Russ.).
  50. Voronina TA. Pioneer of antioxidant neuroprotection. 20 years in clinical practice. RMZh. 2016;24(7):434-438. (In Russ.).
  51. Shchulkin AV. A modern concept of antihypoxic and antioxidant effects of mexidol. S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(12):87-93. (In Russ.). https://doi.org/10.17116/jnevro201811812287
  52. Torshin IYu, Gromova OA, Sardaryan IS, et al. Comparative chemoreactome analysis of mexidol. Farmakokinetika i farmakodinamika. 2016;4:19-30. (In Russ.).
  53. Yakusheva EN, Mylnikov PYu, Chernykh IV, et al. Mexidol effect on the factor induced by hypoxia HIF-1α expression in the rat cerebral cortex in ischemia. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(10):87-91. (In Russ.). https://doi.org/10.17116/jnevro201711710187-91
  54. Yakusheva EN, Mylnikov PYu, Chernykh IV, et al. An effect of mexidol on the expression of the transcription factor Nrf2 in the rat cerebral cortex in ischemia. S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(5):64-68. (In Russ.). https://doi.org/10.17116/jnevro20181185164
  55. Terekhina OL, Kirova YuI. The effect of ethylmethylhydroxypyridine succinate on the parameters of chronic neuroinflammation and plastic processes in the brain of old rats during course of dexamethasone administration. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(9):115-121. (In Russ.). https://doi.org/10.17116/jnevro2024124091115
  56. Kirova YuI, Shakova FM, Germanova EL, et al. The effect of Mexidol on cerebral mitochondriogenesis at a young age and during aging. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(1):62-69. (In Russ.). https://doi.org/10.17116/jnevro202012001162
  57. Zavadenko NN, Suvorinova NYu, Zavadenko AN. The possibilities of Mexidol usage in neuropediatrics. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(9-2):43-50. (In Russ.). https://doi.org/10.17116/jnevro202312309243
  58. Kryuger EA, Bobrisheva AV, Mazinova ER, et al. Mexidol as a corrector of free radical oxidation in the complex treatment of purulent meningitis in children. Krymskij zhurnal eksperimental’noj i klinicheskoj mediciny. 2012;2(1):71-75. (In Russ.).
  59. Alekseeva LA, Skripchenko NV, Bessonova TV. Laboratory criteria for endogenous intoxication in children with meningococcal infection. Pediatr. 2011;II(2):3-9. (In Russ.).
  60. Cypina LG. The use of mexidol in the complex therapy of acute neuroinfections in children. Byulleten’ eksperimental’noj biologii i mediciny. 2012;1:246-251. (In Russ.).
  61. Hvojnov DV, Vel’c AV, Ahmetova VM, et al. The use of mexidol in intensive therapy of purulent neuroinfections in children. Byulleten’ eksperimental’noj biologii i mediciny. 2012;1:91-95. (In Russ.).
  62. Karavaeva MO, Krichkova EP. The use of Mexidol in focal forms of measles encephalitis in rubella in children in the intensive care unit and in the early recovery period. Byulleten’ eksperimental’noj biologii i mediciny. 2006; 1:186-189. (In Russ.).
  63. Sipyagina MK. Vliyanie mexidola na dinamiku nekotoryh ekhokardiograficheskih pokazatelej pri povtornoj angine. Vestnik novyh medicinskih tekhnologij. 2010;17(4):68-70. (In Russ.).
  64. Shavarova EK, Kazahmedov ER, Alekseeva MV, et al. The role of antioxidant therapy in patients with novel coronavirus infection COVID-19 is moderate to severe. Infekcionnye bolezni. 2021;19(1):159-164. (In Russ.).
  65. Chichanovskaya LV, Slyusar TA, Abramenko YuV, et al. Pharmacological correction of cognitive status of patients with post-COVID syndrome. Medical alphabet. Neurology and psychiatry. 2023;21(3):7-12. (In Russ.). https://doi.org/10.33667/2078-5631-2023-21-7-12
  66. Chichanovskaya LV, Slyusar TA, Abramenko YuV, et al. Clinico-psychological profile and life quality of patients with post-COVID syndrome. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(4):53-58. (In Russ.). https://doi.org/10.17116/jnevro202312304153
  67. Kovalchuk VV, Ershova II, Molodovskaya NV. Possibilities of improving the effectiveness of therapy in patients with chronic cerebral ischemia against the background of COVID-19. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(3-2):60-66. (In Russ.). https://doi.org/10.17116/jnevro202112103260
  68. Ekusheva EV, Koval’chuk VV, Shchukin IA. Nevrologicheskie oslozhneniya COVID-19 i postkovidnyj sindrom. M.: OOO «AST 345». 2022. (In Russ.).
  69. Kusonskaya OS. The use of the drug «Mexidol» for the treatment of asthenic syndrome after acute respiratory viral infections. Mexidol: generalization of clinical application experience. M.: MediaSphere. 2012;166-167. (In Russ.).
  70. Poverennova IE, Zolotovskaia IA, Bezgina EV. Diagnosis and treatment of asthenic syndrome in elderly people after acute respiratory viral infection. S.S. Korsakov Journal of Neurology and Psychiatry. 2014;114(9):73-76. (In Russ.).
  71. Hamitova GR. Primenenie preparata «Mexidol» v detskoj nevrologicheskoj praktike. MEXIDOL: obobshchenie opyta klinicheskogo primeneniya. M.: MediaSphere. 2012;100-101. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.