The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Litvinenko I.V.

Kirov Military Medical Academy

Naumov K.M.

Kirov Military Medical Academy

Lobzin V.Y.

Kirov Military Medical Academy;
Mechnikov North-Western State Medical University

Emelin A.Y.

Kirov Military Medical Academy

Dynin P.S.

Kirov Military Medical Academy

Kolmakova K.A.

Kirov Military Medical Academy

Nikishin V.O.

Kirov Military Medical Academy

Traumatic brain injury as risk factor of Alzheimer’s disease and possibilities of pathogenetic therapy

Authors:

Litvinenko I.V., Naumov K.M., Lobzin V.Y., Emelin A.Y., Dynin P.S., Kolmakova K.A., Nikishin V.O.

More about the authors

Read: 2765 times


To cite this article:

Litvinenko IV, Naumov KM, Lobzin VY, Emelin AY, Dynin PS, Kolmakova KA, Nikishin VO. Traumatic brain injury as risk factor of Alzheimer’s disease and possibilities of pathogenetic therapy. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(1):45‑54. (In Russ.)
https://doi.org/10.17116/jnevro202412401145

Recommended articles:
The role of immuno-inflammatory factors in the deve­lopment of nega­tive symptoms in schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):42-48
Cognitive impairment in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):81-90
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121
Cognitive impairment in bili­nguals with neurological diseases. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):26-29
Neurometabolic therapy with Cere­brolysin in patients with sepsis-associated ence­phalopathy. Russian Journal of Anesthesiology and Reanimatology. 2024;(6):46-54

References:

  1. Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 2012;8(1):1-13.  https://doi.org/10.1016/j.jalz.2011.10.007
  2. Lobo A, Launer LJ, Fratiglioni L, et al. Prevalence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology. 2000;54(11 suppl 5):S4-S9. 
  3. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7(2):e105-e125. https://doi.org/10.1016/S2468-2667(21)00249-8
  4. Litvinenko IV, Krasakov IV, Bisaga GN, et al. Modern conception of the pathogenesis of neurodegenerative diseases and therapeutic strategy. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2017;117(6-2):3-10. (In Russ.). https://doi.org/10.17116/jnevro2017117623-10
  5. Martland HS. Punch drunk. JAMA. 1928;91(15):1103-1107.
  6. Sivanandam TM, Thakur MK. Traumatic brain injury: a risk factor for Alzheimer’s disease. Neurosci Biobehav Rev. 2012;36(5):1376-1381. https://doi.org/10.1016/j.neubiorev.2012.02.013
  7. Toschlog EA, MacElligot J, Sagraves SG, et al. The relationship of Injury Severity Score and Glasgow Coma Score to rehabilitative potential in patients suffering traumatic brain injury. Am Surg. 2003;69(6):491-498. 
  8. Plassman BL, Havlik RJ, Steffens DC, et al. Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology. 2000;55(8):1158-1166. https://doi.org/10.1212/wnl.55.8.1158
  9. Mosenthal AC, Lavery RF, Addis M, et al. Isolated traumatic brain injury: age is an independent predictor of mortality and early outcome. J Trauma. 2002;52(5):907-911.  https://doi.org/10.1097/00005373-200205000-00015
  10. Goldstein LE, Fisher AM, Tagge CA, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med. 2012;4(134):134ra60. https://doi.org/10.1126/scitranslmed.3003716
  11. Yurin AA, Litvinenko IV, Trufanov AG. Sovremennye vozmozhnosti magnitno-rezonansnoy tomografii pri cherepno-mozgovoy travme. Bulletin of the Russian Military Medical Academy. 2018;20(3S):118-121.  https://journals.eco-vector.com/1682-7392/article/view/13232
  12. Barone FC, Feuerstein GZ. Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab. 1999;19(8):819-834.  https://doi.org/10.1097/00004647-199908000-00001
  13. Witcher KG, Bray CE, Chunchai T, et al. Traumatic Brain Injury Causes Chronic Cortical Inflammation and Neuronal Dysfunction Mediated by Microglia. J Neurosci. 2021;41(7):1597-1616. https://doi.org/10.1523/JNEUROSCI.2469-20.2020
  14. Shitaka Y, Tran HT, Bennett RE, et al. Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J Neuropathol Exp Neurol. 2011;70(7):551-567.  https://doi.org/10.1097/NEN.0b013e31821f891f
  15. Mouzon BC, Bachmeier C, Ferro A, et al. Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Ann Neurol. 2014;75(2):241-254.  https://doi.org/10.1002/ana.24064
  16. Aungst SL, Kabadi SV, Thompson SM, et al. Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits. J Cereb Blood Flow Metab. 2014;34(7):1223-1232. https://doi.org/10.1038/jcbfm.2014.75
  17. Loane DJ, Kumar A, Stoica BA, et al. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol. 2014;73(1):14-29.  https://doi.org/10.1097/NEN.0000000000000021
  18. Saber M, Kokiko-Cochran O, Puntambekar SS, et al. Triggering Receptor Expressed on Myeloid Cells 2 Deficiency Alters Acute Macrophage Distribution and Improves Recovery after Traumatic Brain Injury. J Neurotrauma. 2017;34(2):423-435.  https://doi.org/10.1089/neu.2016.4401
  19. Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun. 2012;26(8):1191-1201. https://doi.org/10.1016/j.bbi.2012.06.008
  20. Mannix RC, Whalen MJ. Traumatic brain injury, microglia, and Beta amyloid. Int J Alzheimers Dis. 2012;2012:608732. https://doi.org/10.1155/2012/608732
  21. Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43-51.  https://doi.org/10.1016/j.biopsych.2014.05.006
  22. Andreasson KI, Bachstetter AD, Colonna M, et al. Targeting innate immunity for neurodegenerative disorders of the central nervous system. J Neurochem. 2016;138(5):653-693.  https://doi.org/10.1111/jnc.13667
  23. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol. 2011;70(3):374-383.  https://doi.org/10.1002/ana.22455
  24. Kulbe JR, Hall ED. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Prog Neurobiol. 2017;158:15-44.  https://doi.org/10.1016/j.pneurobio.2017.08.003
  25. Lamade AM, Anthonymuthu TS, Hier ZE, et al. Mitochondrial damage & lipid signaling in traumatic brain injury. Exp Neurol. 2020;329:113307. https://doi.org/10.1016/j.expneurol.2020.113307
  26. Ghiso J, Fossati S, Rostagno A. Amyloidosis associated with cerebral amyloid angiopathy: cell signaling pathways elicited in cerebral endothelial cells. J Alzheimers Dis. 2014;42 suppl 3(0 3):S167-S176.
  27. Odinak MM, Vorob’ev SV, Fokin VA, et al. Magnitno-rezonansnaya morfometriya v differentsial’noi diagnostike posttravmaticheskikh kognitivnykh narushenii. Nevrologiya, Neiropsikhiatriya, Psikhosomatika. 2014;6(2):13-18. (In Russ.). https://doi.org/10.14412/2074-2711-2014-2-13-18
  28. Glushakova OY, Johnson D, Hayes RL. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. J Neurotrauma. 2014;31(13):1180-1193. https://doi.org/10.1089/neu.2013.3080
  29. Danaila L, Popescu I, Pais V, et al. Apoptosis, paraptosis, necrosis, and cell regeneration in posttraumatic cerebral arteries. Chirurgia (Bucur). 2013;108(3):319-324. 
  30. Fossati S, Todd K, Sotolongo K, et al. Differential contribution of isoaspartate post-translational modifications to the fibrillization and toxic properties of amyloid β and the Asn23 Iowa mutation. Biochem J. 2013;456(3):347-360.  https://doi.org/10.1042/BJ20130652
  31. Iadecola C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron. 2017;96(1):17-42.  https://doi.org/10.1016/j.neuron.2017.07.030
  32. Wen J, Qian S, Yang Q, et al. Overexpression of netrin-1 increases the expression of tight junction-associated proteins, claudin-5, occludin, and ZO-1, following traumatic brain injury in rats. Exp Ther Med. 2014;8(3):881-886.  https://doi.org/10.3892/etm.2014.1818
  33. Jullienne A, Roberts JM, Pop V, et al. Juvenile traumatic brain injury induces long-term perivascular matrix changes alongside amyloid-beta accumulation. J Cereb Blood Flow Metab. 2014;34(10):1637-1645. https://doi.org/10.1038/jcbfm.2014.124
  34. Ramos-Cejudo J, Wisniewski T, Marmar C, et al. Traumatic Brain Injury and Alzheimer’s Disease: The Cerebrovascular Link. EBioMedicine. 2018;28:21-30.  https://doi.org/10.1016/j.ebiom.2018.01.021
  35. Fossati S, Ghiso J, Rostagno A. TRAIL death receptors DR4 and DR5 mediate cerebral microvascular endothelial cell apoptosis induced by oligomeric Alzheimer’s Aβ. Cell Death Dis. 2012;3(6):e321. https://doi.org/10.1038/cddis.2012.55
  36. Hernandez-Guillamon M, Martinez-Saez E, Delgado P, et al. MMP-2/MMP-9 plasma level and brain expression in cerebral amyloid angiopathy-associated hemorrhagic stroke. Brain Pathol. 2012;22(2):133-141.  https://doi.org/10.1111/j.1750-3639.2011.00512.x
  37. Tran HT, LaFerla FM, Holtzman DM, et al. Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-β accumulation and independently accelerates the development of tau abnormalities. J Neurosci. 2011;31(26):9513-9525. https://doi.org/10.1523/JNEUROSCI.0858-11.2011
  38. Kolmakova KA, Lobzin VYu, Emelin AYu. Risk factors for perivascular-glymphatic dysfunction and the development of Alzheimer’s disease. Russian Military Medical Academy Reports. 2021;40(S4):42-46. (In Russ.).
  39. Iliff JJ, Chen MJ, Plog BA, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34(49):16180-16193. https://doi.org/10.1523/JNEUROSCI.3020-14.2014
  40. Morris M, Knudsen GM, Maeda S, et al. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat Neurosci. 2015;18(8):1183-1189. https://doi.org/10.1038/nn.4067
  41. Smith DH, Chen XH, Iwata A, Graham DI. Amyloid beta accumulation in axons after traumatic brain injury in humans. J Neurosurg. 2003;98(5):1072-1077. https://doi.org/10.3171/jns.2003.98.5.1072
  42. Sengupta U, Nilson AN, Kayed R. The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine. 2016;6:42-49.  https://doi.org/10.1016/j.ebiom.2016.03.035
  43. Scott G, Ramlackhansingh AF, Edison P, et al. Amyloid pathology and axonal injury after brain trauma. Neurology. 2016;86(9):821-828.  https://doi.org/10.1212/WNL.0000000000002413
  44. Vorobyev SV, Fokin VA, Lobzin VY, et al. Application of magnetic resonance spectroscopy within the framework of pathogenetic diagnosis of posttraumatic cognitive impairment. Russian Military Medical Academy Reports. 2013;3(43):11-15. (In Russ.).
  45. Levin OS, Bogolepova AN, Lobzin VYu. General mechanisms of the pathogenesis of neurodenerative and cerebrovascular diseases and the possibilities of their correction. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2022;122(5):11-16. (In Russ.). https://doi.org/10.17116/jnevro202212205111
  46. Hong YT, Veenith T, Dewar D, et al. Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurol. 2014;71(1):23-31.  https://doi.org/10.1001/jamaneurol.2013.4847
  47. Xiao N, Le QT. Neurotrophic Factors and Their Potential Applications in Tissue Regeneration. Arch Immunol Ther Exp (Warsz). 2016;64(2):89-99.  https://doi.org/10.1007/s00005-015-0376-4
  48. Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors. 2004;22(3):123-131.  https://doi.org/10.1080/08977190410001723308
  49. Loughlin SE, Fallon JH. Neurotrophic Factors. Elsevier; 2012.
  50. Fann MJ, Patterson PH. Neuropoietic cytokines and activin A differentially regulate the phenotype of cultured sympathetic neurons. Proc Natl Acad Sci USA. 1994;91(1):43-47.  https://doi.org/10.1073/pnas.91.1.43
  51. Turner R, Lucke‐Wold B, Miller D, et al. Neuropoietic Cytokines and Neural Injury: Alterations in JAK2/STAT3 Signaling Associated with Aging. In: Neurological Disorders: New Research. Nova Publishers; 2012.
  52. Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol. 2018;21(3):137-151.  https://doi.org/10.1016/j.cjtee.2018.02.003
  53. Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci. 2004;5(2):146‐156.  https://doi.org/10.1038/nrn1326
  54. Instructions for medical use of the drug Cerebrolysin®, RU P N013827/01, 30.08.2023. (In Russ.).
  55. Gromova OA, Torshin IYu, Gusev EI, et al. Molecular mechanisms of action of amino acids in the composition of Cerebrolysin on neurotransmission. Neurotrophic and neuroprotective effects of amino acids. Trudnyi patsient. 2010;4:25-31. (In Russ.).
  56. Rejdak K, Sienkiewicz-Jarosz H, Bienkowski P, et al. Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of Cerebrolysin. Med Res Rev. 2023;43(5):1668-1700. https://doi.org/10.1002/med.21960
  57. Masliah E, Díez-Tejedor E. The pharmacology of neurotrophic treatment with Cerebrolysin: brain protection and repair to counteract pathologies of acute and chronic neurological disorders. Drugs Today (Barc). 2012;48(suppl A):3-24. 
  58. Ghaffarpasand F, Torabi S, Rasti A, et al. Effects of cerebrolysin on functional outcome of patients with traumatic brain injury: a systematic review and meta-analysis. Neuropsychiatr Dis Treat. 2018;15:127-135.  https://doi.org/10.2147/NDT.S186865
  59. Gavrilova SI, Alvarez A. Cerebrolysin in the therapy of mild cognitive impairment and dementia due to Alzheimer’s disease: 30 years of clinical use. Med Res Rev. 2021;41(5):2775-2803. https://doi.org/10.1002/med.21722
  60. Strilciuc S, Vécsei L, Boering D, et al. Safety of Cerebrolysin for Neurorecovery after Acute Ischemic Stroke: A Systematic Review and Meta-Analysis of Twelve Randomized-Controlled Trials. Pharmaceuticals (Basel). 2021;14(12):1297. https://doi.org/10.3390/ph14121297
  61. Teng H, Li C, Zhang Y, et al. Therapeutic effect of Cerebrolysin on reducing impaired cerebral endothelial cell permeability. Neuroreport. 2021;32(5):359-366.  https://doi.org/10.1097/WNR.0000000000001598
  62. Zhang Y, Chopp M, Meng Y, et al. Improvement in functional recovery with administration of Cerebrolysin after experimental closed head injury. J Neurosurg. 2013;118(6):1343-1355. https://doi.org/10.3171/2013.3.JNS122061
  63. Lu W, Zhu Z, Shi D, et al. Cerebrolysin alleviates early brain injury after traumatic brain injury by inhibiting neuroinflammation and apoptosis via TLR signaling pathway. Acta Cir Bras. 2022;37(6):e370605. https://doi.org/10.1590/acb370605
  64. Vester JC, Buzoianu AD, Florian SI, et al. Cerebrolysin after moderate to severe traumatic brain injury: prospective meta-analysis of the CAPTAIN trial series. Neurol Sci. 2021;42(11):4531-4541. https://doi.org/10.1007/s10072-020-04974-6
  65. Jarosz K, Kojder K, Andrzejewska A, et al. Cerebrolysin in Patients with TBI: Systematic Review and Meta-Analysis. Brain Sci. 2023;13(3):507.  https://doi.org/10.3390/brainsci13030507
  66. Verisezan Rosu O, Jemna N, Hapca E, et al. Cerebrolysin and repetitive transcranial magnetic stimulation (rTMS) in patients with traumatic brain injury: a three-arm randomized trial. Front. Neurosci. 2023;17:1186751. https://doi.org/10.3389/fnins.2023.1186751
  67. Wei ZH, He QB, Wang H, et al. Meta-analysis: the efficacy of nootropic agent Cerebrolysin in the treatment of Alzheimer’s disease. J Neural Transm. 2007;114(5):629-634.  https://doi.org/10.1007/s00702-007-0630-y
  68. Levin OS, Voznyuk IA, Illarioshkin SN, et al. Cognitive impairment and tactics of using the drug Cerebrolysin. Resolution of the International Council of Experts (May 12, 2023). Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2023;123(9):121-130. (In Russ.). https://doi.org/10.17116/jnevro2023123091121

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.