The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Dobrynina L.A.

Research Center of Neurology

Makarova A.G.

Research Center of Neurology

Shabalina A.A.

Research Center of Neurology

Burmak A.G.

Research Center of Neurology

Shlapakova P.S.

Research Center of Neurology

Shamtieva K.V.

Research Center of Neurology

Tsypushtanova M.M.

Research Center of Neurology

Trubitsyna V.V.

Research Center of Neurology

Gnedovskaya E.V.

Research Center of Neurology

A role of altered inflammation-related gene expression in cerebral small vessel disease with cognitive impairment

Authors:

Dobrynina L.A., Makarova A.G., Shabalina A.A., Burmak A.G., Shlapakova P.S., Shamtieva K.V., Tsypushtanova M.M., Trubitsyna V.V., Gnedovskaya E.V.

More about the authors

Read: 2512 times


To cite this article:

Dobrynina LA, Makarova AG, Shabalina AA, et al. . A role of altered inflammation-related gene expression in cerebral small vessel disease with cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(9):58‑68. (In Russ.)
https://doi.org/10.17116/jnevro202312309158

Recommended articles:
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121
Perioperative prevention of bleeding in glaucoma surgery. Russian Annals of Ophthalmology. 2024;(5):118-124
Effi­cacy of alpha-glutamyl-tryptophan in the treatment of chro­nic atro­phic gastritis: case series. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):121-128
Neuropeptide Y and inflammatory indi­ces in women after repeated cesa­rean section. Russian Bulletin of Obstetrician-Gynecologist. 2024;(6):35-40
Anti­fungal immu­nity in patients with chro­nic rhinosinusitis with nasal polyps. Russian Bulletin of Otorhinolaryngology. 2024;(6):40-45
Functional cyto­kine redu­ndancy in pregnancy. Russian Journal of Human Reproduction. 2024;(6):73-80

References:

  1. Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42(9):2672-2713. https://doi.org/10.1161/str.0b013e3182299496
  2. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18(7):684-696.  https://doi.org/10.1016/s1474-4422(19)30079-1
  3. Toledo JB, Arnold SE, Raible K, et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain. 2013;136(Pt 9):2697-2706. https://doi.org/10.1093/brain/awt188
  4. Kapasi A, DeCarli C, Schneider JA. Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol. 2017;134(2):171-186.  https://doi.org/10.1007/s00401-017-1717-7
  5. Jellinger KA, Attems J. Neuropathology and general autopsy findings in nondemented aged subjects. Clin Neuropathol. 2012;31(2):87-98.  https://doi.org/10.5414/np300418
  6. Love S, Miners JS. Cerebrovascular disease in ageing and Alzheimer’s disease. Acta Neuropathol. 2016;131(5):645-658.  https://doi.org/10.1007/s00401-015-1522-0
  7. Kim HW, Hong J, Jeon JC. Cerebral Small Vessel Disease and Alzheimer’s Disease: A Review. Front Neurol. 2020;11:927.  https://doi.org/10.3389/fneur.2020.00927
  8. Low A, Mak E, Malpetti M, et al. In vivo neuroinflammation and cerebral small vessel disease in mild cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2021;92:45-52.  https://doi.org/10.1136/jnnp-2020-323894
  9. Wolters FJ, Zonneveld HI, Hofman A, et al. Cerebral Perfusion and the Risk of Dementia: A Population-Based Study. Circulation. 2017;136(8):719-728.  https://doi.org/10.1161/CIRCULATIONAHA.117.027448
  10. Montagne A, Barnes SR, Sweeney MD, et al. Blood-Brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296-302.  https://doi.org/10.1016/j.Neuron.2014.12.032
  11. Tayler H, Miners JS, Güzel Ö, et al. Mediators of cerebral hypoperfusion and blood-brain barrier leakiness in Alzheimer’s disease, vascular dementia and mixed dementia. Brain Pathol. 2021;31(4):e12935. https://doi.org/10.1111/bpa.12935
  12. Fakhoury M. Microglia and Astrocytes in Alzheimer’s Disease: Implications for Therapy. Curr Neuropharmacol. 2018;16(5):508-518.  https://doi.org/10.2174/1570159x15666170720095240
  13. Poudel P, Park S. Recent Advances in the Treatment of Alzheimer’s Disease Using Nanoparticle-Based Drug Delivery Systems. Pharmaceutics. 2022;14(4):835.  https://doi.org/10.3390/Pharmaceutics14040835
  14. Jian B, Hu M, Cai W, et al. Update of Immunosenescence in Cerebral Small Vessel Disease. Front Immunol. 2020;11:585655. https://doi.org/10.3389/fimmu.2020.585655
  15. Kaiser D, Weise G, Möller K, et al. Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease. Acta Neuropathol Commun. 2014;2:169.  https://doi.org/10.1186/s40478-014-0169-8
  16. Farkas E, Donka G, de Vos RAI, et al. Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol. 2004;108(1):57-64.  https://doi.org/10.1007/s00401-004-0864-9
  17. Jalal FY, Yang Y, Thompson J, et al. Myelin loss associated with neuroinflammation in hypertensive rats. Stroke. 2012;43(4):1115-1122. https://doi.org/10.1161/strokeaha.111.643080
  18. Löffler T, Flunkert S, Havas D, et al. Neuroinflammation and related neuropathologies in APPSL mice: further value of this in vivo model of Alzheimer’s disease. J Neuroinflammation. 2014;11:84.  https://doi.org/10.1186/1742-2094-11-84
  19. Nazem A, Sankowski R, Bacher M, Al-Abed Y. Rodent models of neuroinflammation for Alzheimer’s disease. J Neuroinflammation. 2015;12:74.  https://doi.org/10.1186/s12974-015-0291-y
  20. Simpson JE, Fernando MS, Clark L, et al. B. White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathol Appl Neurobiol. 2007;33(4):410-419.  https://doi.org/10.1111/j.1365-2990.2007.00828.x
  21. Gouw AA, Seewann A, van der Flier WM, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry. 2011;82(2):126-135.  https://doi.org/10.1136/jnnp.2009.204685
  22. Cribbs DH, Berchtold NC, Perreau V, et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation. 2012;9:179.  https://doi.org/10.1186/1742-2094-9-179
  23. Gomez-Nicola D, Boche D. Post-mortem analysis of neuroinflammatory changes in human Alzheimer’s disease. Alzheimers Res Ther. 2015;7(1):42.  https://doi.org/10.1186/s13195-015-0126-1
  24. Wilcock DM, Hurban J, Helman AM, et al. Down syndrome individuals with Alzheimer’s disease have a distinct neuroinflammatory phenotype compared to sporadic Alzheimer’s disease. Neurobiol Aging. 2015;36(9):2468-2474. https://doi.org/10.1016/j.neurobiolaging.2015.05.016
  25. Walsh J, Tozer DJ, Sari H, et al. Microglial activation and blood-brain barrier permeability in cerebral small vessel disease. Brain. 2021;144(5):1361-1371. https://doi.org/10.1093/brain/awab003
  26. Lagarde J, Sarazin M, Bottlaender M. In vivo PET imaging of neuroinflammation in Alzheimer’s disease. J Neural Transm (Vienna). 2018;125(5):847-867.  https://doi.org/10.1007/s00702-017-1731-x
  27. Zimmer ER, Leuzy A, Benedet AL, et al. Tracking neuroinflammation in Alzheimer’s disease: the role of positron emission tomography imaging. J Neuroinflammation. 2014;11:120.  https://doi.org/10.1186/1742-2094-11-120
  28. Chandra A, Valkimadi PE, Pagano G, et al. Applications of amyloid, tau, and neuroinflammation PET imaging to Alzheimer’s disease and mild cognitive impairment. Hum Brain Mapp. 2019;40(18):5424-5442. https://doi.org/10.1002/hbm.24782
  29. Fornage M, Adams HH, Bis JC, et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann Neurol. 2011;69(6):928-939.  https://doi.org/10.1161/str.50.suppl_1.wp216
  30. Haffner C, Malik R, Dichgans M. Genetic factors in cerebral small vessel disease and their impact on Stroke and dementia. J Cereb Blood Flow Metab. 2016;36(1):158-171.  https://doi.org/10.1038/jcbfm.2015.71
  31. Verhaaren BF, Debette S, Bis JC, et al. Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI. Circ Cardiovasc Genet. 2015;8(2):398-409.  https://doi.org/10.1161/CIRCGENETICS.114.000858
  32. Traylor M, Tozer DJ, Croall ID, et al. Genetic variation in PLEKHG1 is associated with white matter hyperintensities (n=11,226). Neurology. 2019; 92(8):749-757.  https://doi.org/10.1212/WNL.0000000000006952
  33. Persyn E, Hanscombe KB, Howson JMM, et al. Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants. Nat Commun. 2020;11(1):2175. https://doi.org/10.1038/s41467-020-15932-3
  34. Sargurupremraj M, Suzuki H, Jian X, et al. Cerebral small vessel disease genomics and its implications across the lifespan. Nat Commun. 2020;11(1):6285. https://doi.org/10.1038/s41467-020-19111-2
  35. Armstrong NJ, Mather KA, Sargurupremraj M, et al. Common Genetic Variation Indicates Separate Etiologies for Periventricular and Deep White Matter Hyperintensities. Stroke. 2020;51:2111-2121. https://doi.org/10.1161/STROKEAHA.119.027544
  36. Knol MJ, Lu D, Traylor M, et al. Association of common genetic variants with brain microbleeds: A genome-wide association study. Neurology. 2020;95(24):3331-3343. https://doi.org/10.1212/WNL.0000000000010852
  37. Li HQ, Cai WJ, Hou XH, et al. Genome-Wide Association Study of Cerebral Microbleeds on MRI. Neurotox Res. 2020;37(1):146-155.  https://doi.org/10.1007/s12640-019-00073-3
  38. McQuade A, Blurton-Jones M. Microglia in Alzheimer’s Disease: Exploring How Genetics and Phenotype Influence Risk. J Mol Biol. 2019;431(9): 1805-1817. https://doi.org/10.1016/j.jmb.2019.01.045
  39. Naj AC, Jun G, Beecham GW, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43(5):436-441.  https://doi.org/10.1038/ng.801
  40. Bellenguez C, Grenier-Boley B, Lambert JC. Genetics of Alzheimer’s disease: where we are, and where we are going. Curr Opin Neurobiol. 2020;61:40-48.  https://doi.org/10.1016/j.conb.2019.11.024
  41. Kamboh MI, Barmada MM, Demirci FY, et al. Genome-wide association analysis of age-at-onset in Alzheimer’s disease. Mol Psychiatry. 2012;17(12):1340-1346. https://doi.org/10.1038/mp.2011.135
  42. Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452-1458. https://doi.org/10.1038/ng.2802
  43. Almeida JFF, Dos Santos LR, Trancozo M, de Paula F. Updated Meta-Analysis of BIN1, CR1, MS4A6A, CLU, and ABCA7 Variants in Alzheimer’s Disease. J Mol Neurosci. 2018;64(3):471-477.  https://doi.org/10.1007/s12031-018-1045-y
  44. Dörr A. Single-cell RNA-seq relates GWAS variants to disease risk. Nat Biotechnol. 2022;40(11):1574. https://doi.org/10.1038/s41587-022-01570-1
  45. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). G Ital Cardiol (Rome). 2018;19(11 Suppl 1):3-73.  https://doi.org/10.1714/3026.30245
  46. Arlington VA, American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. 2013.
  47. Traylor M, Malik R, Nalls MA, et al. Genetic variation at 16q24.2 is associated with small vessel stroke. Ann Neurol. 2017;81(3):383-394.  https://doi.org/10.1002/ana.24840
  48. Malik R, Chauhan G, Traylor M, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with Stroke and Stroke subtypes Nat Genet. 2018;50(4):524-537.  https://doi.org/10.1038/s41588-018-0058-3
  49. Marini S, Devan WJ, Radmanesh F, et al. 17p12 Influences Hematoma Volume and Outcome in Spontaneous Intracerebral Hemorrhage. Stroke. 2018;49(7):1618-1625. https://doi.org/10.1161/STROKEAHA.117.020091
  50. Chung J, Marini S, Pera J, et al. Genome-wide association study of cerebral small vessel disease reveals established and novel loci. Brain. 2019;142(10):3176-3189. https://doi.org/10.1093/brain/awz233
  51. Traylor M, Persyn E, Tomppo L, et al. Genetic basis of lacunar Stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurol. 2021;20(5):351-361.  https://doi.org/10.1016/S1474-4422(21)00031-4
  52. Rajani RM, Williams A. Endothelial cell-oligodendrocyte interactions in small vessel disease and aging. Clin Sci (Lond). 2017;131(5):369-379.  https://doi.org/10.1042/CS20160618
  53. Rouhl RP, Damoiseaux JG, Lodder J, et al. Vascular inflammation in cerebral small vessel disease. Neurobiol Aging. 2012;33(8):1800-1806. https://doi.org/10.1016/j.neurobiolaging.2011.04.008
  54. Zeng L, Wang Y, Liu J, et al. Pro-inflammatory cytokine network in peripheral inflammation response to cerebral ischemia. Neurosci Lett. 2013;548:4-9.  https://doi.org/10.1016/j.neulet.2013.04.037
  55. Wiseman S, Marlborough F, Doubal F, et al. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke: systematic review and meta-analysis. Cerebrovasc Dis. 2014;37(1):64-75.  https://doi.org/10.1159/000356789
  56. Shoamanesh A, Preis SR, Beiser AS, et al. Inflammatory biomarkers, cerebral microbleeds, and small vessel disease: Framingham Heart Study. Neurology. 2015;84(8):825-832.  https://doi.org/10.1212/WNL.0000000000001279
  57. Kuriyama N, Mizuno T, Kita M, et al. TGF-beta1 is associated with the progression of intracranial deep white matter lesions: a pilot study with 5 years of magnetic resonance imaging follow-up. Neurol Res. 2014;36(1):47-52.  https://doi.org/10.1179/1743132813Y.0000000256
  58. Dobrynina LA, Shabalina AA, Zabitova MR, et al. Tissue Plasminogen Activator and MRI Signs of Cerebral Small Vessel Disease. Brain Sci. 2019;9:266.  https://doi.org/10.3390/brainsci9100266
  59. Dobrynina LA, Gnedovskaya EV, Shabalina AA, et al. Biomarkers and mechanisms of early vascular damage. S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(12-2):23-32. (In Russ.). https://doi.org/10.17116/jnevro201811812223
  60. Tingley D, Yamamoto T, Hirose K, et al. Mediation: R package for causal mediation analysis. Journal of Statistical Software. 2014;59(5). https://doi.org/10.18637/jss.v059.i05
  61. Chapuis J, Hansmannel F, Gistelinck M, et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry. 2013;18(11):1225-1234. https://doi.org/10.1038/mp.2013.1
  62. Prokic I, Cowling BS, Laporte J. Amphiphysin 2 (BIN1) in physiology and diseases. J Mol Med (Berl). 2014;92(5):453-463.  https://doi.org/10.1007/s00109-014-1138-1
  63. Taga M, Petyuk VA, White C, et al. BIN1 protein isoforms are differentially expressed in astrocytes, Neurons, and microglia: Neuronal and astrocyte BIN1 are implicated in tau pathology. Mol Neurodegener. 2020;15(1):44.  https://doi.org/10.1186/s13024-020-00387-3
  64. De Rossi P, Buggia-Prévot V, Clayton BL, et al. Predominant expression of Alzheimer’s disease-associated BIN1 in mature oligodendrocytes and localization to white matter tracts. Mol Neurodegener. 2016;11(1):59.  https://doi.org/10.1186/s13024-016-0124-1
  65. Sudwarts A, Ramesha S, Gao T, et al. BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia. Mol Neurodegener. 2022;17(1):33.  https://doi.org/10.1186/s13024-022-00535-x
  66. Wang HF, Wan Y, Hao XK, et al. Bridging Integrator 1 (BIN1) Genotypes Mediate Alzheimer’s Disease Risk by Altering Neuronal Degeneration. J Alzheimers Dis. 2016;52(1):179-190.  https://doi.org/10.3233/JAD-150972
  67. Miyagawa T, Ebinuma I, Morohashi Y, et al. BIN1 regulates BACE1 intracellular trafficking and amyloid-β production. Hum Mol Genet. 2016;25(14):2948-2958. https://doi.org/10.1093/hmg/ddw146
  68. Tan MS, Yu JT, Tan L. Bridging integrator 1 (BIN1): form, function, and Alzheimer’s disease. Trends Mol Med. 2013;19(10):594-603.  https://doi.org/10.1016/j.molmed.2013.06.004
  69. Esmailzadeh S, Huang Y, Su MW, et al. BIN1 tumor suppressor regulates Fas/Fas ligand-mediated apoptosis through c-FLIP in cutaneous T-cell lymphoma. Leukemia. 2015;29(6):1402-1413. https://doi.org/10.1038/leu.2015.9
  70. Glennon EB, Whitehouse IJ, Miners JS, et al. M. BIN1 is decreased in sporadic but not familial Alzheimer’s disease or in aging. PLoS One. 2013;8(10):e78806. https://doi.org/10.1371/journal.pone.0078806
  71. Marques-Coelho D, Iohan LDCC, Melo de Farias AR, Flaig A, Brainbank Neuro-CEB Neuropathology Network, et al. Differential transcript usage unravels gene expression alterations in Alzheimer’s disease human Brains. NPJ Aging Mech Dis. 2021;7(1):2.  https://doi.org/10.1038/s41514-020-00052-5
  72. McKenzie AT, Moyon S, Wang M, et al. Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer’s disease. Mol Neurodegener. 2017;12(1):82.  https://doi.org/10.1186/s13024-017-0219-3
  73. Martiskainen H, Helisalmi S, Viswanathan J, et al. Effects of Alzheimer’s disease-associated risk loci on cerebrospinal fluid biomarkers and disease progression: a polygenic risk score approach. J Alzheimers Dis. 2015;43(2):565-573.  https://doi.org/10.3233/JAD-140777
  74. Hu H, Tan L, Bi YL, et al. Association between methylation of BIN1 promoter in peripheral blood and preclinical Alzheimer’s disease. Transl Psychiatry. 2021;11(1):89.  https://doi.org/10.1038/s41398-021-01218-9
  75. Sun L, Tan MS, Hu N, et al. Exploring the value of plasma BIN1 as a potential biomarker for alzheimer’s disease. J Alzheimers Dis. 2013;37(2):291-295.  https://doi.org/10.3233/JAD-130392
  76. Sweeney MD, Zhao Z, Montagne A, et al. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol Rev. 2019;99(1):21-78.  https://doi.org/10.1152/physrev.00050.2017
  77. Andrew RJ, De Rossi P, Nguyen P, et al. Reduction of the expression of the late-onset Alzheimer’s disease (AD) risk-factor BIN1 does not affect amyloid pathology in an AD mouse model. J Biol Chem. 2019;294(12):4477-4487. https://doi.org/10.1074/jbc.RA118.006379
  78. Juul Rasmussen I, Tybjærg-Hansen A, Rasmussen KL, et al. Blood-brain barrier transcytosis genes, risk of dementia and stroke: a prospective cohort study of 74,754 individuals. Eur J Epidemiol. 2019;34(6):579-590.  https://doi.org/10.1007/s10654-019-00498-2
  79. Dobrynina LA, Gnedovskaya EV, Sergeeva AN, et al. Changes in the MRI Brain picture associated with newly diagnosed asymptomatic arterial hypertension. Annals of Clinical and Experimental Neurology. 2016;10(3):25-32. (In Russ.).
  80. Zhang CE, Wong SM, Uiterwijk R, et al. Blood-Brain barrier leakage in relation to white matter hyperintensity volume and cognition in small vessel disease and normal aging. Brain Imaging Behav. 2019;13(2):389-395.  https://doi.org/10.1007/s11682-018-9855-7
  81. Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 2013;153(1):13-19.  https://doi.org/10.1093/jb/mvs136
  82. Lange C, Storkebaum E, de Almodóvar CR, et al. Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat Rev Neurol. 2016;12(8):439-454.  https://doi.org/10.1038/nrneurol.2016.88
  83. Dobrynina LA, Gnedovskaya EV, Zabitova MR, et al. Clustering of diagnostic MRI signs of cerebral microangiopathy and its relationship with markers of inflammation and angiogenesis. S.S. Korsakov Journal of Neurology and Psychiatry. Special issues. 2020;120(12 vyp. 2):22-31. (In Russ.). https://doi.org/10.17116/jnevro202012012222
  84. Dobrynina LA, Zabitova MR, Shabalina AA, et al. MRI Types of Cerebral Small Vessel Disease and Circulating Markers of Vascular Wall Damage. Diagnostics (Basel). 2020;10(6):354.  https://doi.org/10.3390/diagnostics10060354
  85. Miyamoto N, Pham LD, Seo JH, et al. Crosstalk between cerebral endothelium and oligodendrocyte. Cell Mol Life Sci. 2014;71(6):1055-1066. https://doi.org/10.1007/s00018-013-1488-9
  86. Martin L, Bouvet P, Chounlamountri N, et al. VEGF counteracts amyloid-β-induced synaptic dysfunction. Cell Rep. 2021;35(6):109121. https://doi.org/10.1016/j.celrep.2021.109121
  87. Patel NS, Mathura VS, Bachmeier C, et al. Alzheimer’s beta-amyloid peptide blocks vascular endothelial growth factor mediated signaling via direct interaction with VEGFR-2. J Neurochem. 2010;112(1):66-76.  https://doi.org/10.1111/j.1471-4159.2009.06426.x
  88. Huang L, Jia J, Liu R. Decreased serum levels of the angiogenic factors VEGF and TGF-β1 in Alzheimer’s disease and amnestic mild cognitive impairment. Neurosci Lett. 2013;550:60-63.  https://doi.org/10.1016/j.neulet.2013.06.031
  89. Yin Q, Ma J, Han X, et al. Spatiotemporal variations of vascular endothelial growth factor in the brain of diabetic cognitive impairment. Pharmacological Research. 2021;163:105234. https://doi.org/10.1016/j.phrs.2020.105234.
  90. Tian Y, Zhao M, Chen Y, et al. The Underlying Role of the Glymphatic System and Meningeal Lymphatic Vessels in Cerebral Small Vessel Disease. Biomolecules. 2022;12(6):748.  https://doi.org/10.3390/biom12060748.
  91. Li Q, Chen Y, Feng W, et al. Drainage of senescent astrocytes from Brain via meningeal lymphatic routes. Brain Behav Immun. 2022;103:85-96.  https://doi.org/10.1016/j.bbi.2022.04.005
  92. Song E, Mao T, Dong H, et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature. 2020;577(7792):689-694.  https://doi.org/10.1038/s41586-019-1912-x
  93. Brown A, Amunts A, Bai X-C, et al. Structure of the large ribosomal subunit from human mitochondria. Science. 2014;346(6210):718-722.  https://doi.org/10.1126/science.1258026
  94. Boczonadi V, Horvath R. Mitochondria: impaired mitochondrial translation in human disease. Int J Biochem Cell Biol. 2014;48:77-84.  https://doi.org/10.1016/j.biocel.2013.12.011
  95. Fischer MT, Sharma R, Lim JL, et al. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain. 2012;135:886-899.  https://doi.org/10.1093/brain/aws012
  96. Lopez LM, Hill WD, Harris SE, et al. Genes from a translational analysis support a multifactorial Nature of white matter hyperintensities. Stroke. 2015;46:341-347.  https://doi.org/10.1161/STROKEAHA.114.007649
  97. Trigo D, Vitória JJ, da Cruz E, Silva OAB. Novel therapeutic strategies targeting mitochondria as a gateway in neurodegeneration. Neural Regen Res. 2023;18(5):991-995.  https://doi.org/10.4103/1673-5374.355750

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.