Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Сарвилина И.В.

ООО «Медицинский центр «Новомедицина»

Данилов Ал.Б.

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)

Ткачева О.Н.

ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

Громова О.А.

ФИЦ «Информатика и управление» Российской академии наук

Соловьева Э.Ю.

ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

Дудинская Е.Н.

ОСП «Российский геронтологический научно-клинический центр» ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

Розанов А.В.

ОСП «Российский геронтологический научно-клинический центр» ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

Карташова Е.А.

ФГБОУ ВО «Ростовский государственный медицинский университет» Минздрава России

Влияние хронической боли при остеоартрите на риск развития сердечно-сосудистых заболеваний и современные способы их лекарственной профилактики

Авторы:

Сарвилина И.В., Данилов Ал.Б., Ткачева О.Н., Громова О.А., Соловьева Э.Ю., Дудинская Е.Н., Розанов А.В., Карташова Е.А.

Подробнее об авторах

Прочитано: 3470 раз


Как цитировать:

Сарвилина И.В., Данилов Ал.Б., Ткачева О.Н., и др. Влияние хронической боли при остеоартрите на риск развития сердечно-сосудистых заболеваний и современные способы их лекарственной профилактики. Журнал неврологии и психиатрии им. С.С. Корсакова. 2023;123(5):20‑30.
Sarvilina IV, Danilov AlB, Tkacheva ON, et al. Influence of chronic pain in osteoarthritis on the risk of cardiovascular diseases and modern methods of drug prevention. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(5):20‑30. (In Russ.)
https://doi.org/10.17116/jnevro202312305120

Рекомендуем статьи по данной теме:
Кон­троль ней­ро­па­ти­чес­кой бо­ли при по­яс­нич­но-крес­тцо­вой дор­сал­гии. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(11):152-157
Сов­ре­мен­ное сос­то­яние ал­го­ло­гии — ме­ди­ци­ны бо­ли — в Рос­сий­ской Фе­де­ра­ции. Жур­нал «Воп­ро­сы ней­ро­хи­рур­гии» име­ни Н.Н. Бур­ден­ко. 2024;(6):5-12
Хи­рур­ги­чес­кое ле­че­ние ги­гантской анев­риз­мы под­ко­лен­ной ар­те­рии. Кар­ди­оло­гия и сер­деч­но-со­су­дис­тая хи­рур­гия. 2025;(1):115-119

Сердечно-сосудистые заболевания (ССЗ) и заболевания опорно-двигательного аппарата в первую очередь остеоартрит (ОА) являются ведущими причинами утраты трудоспособности в мире [1, 2]. По данным ВОЗ, ежегодно от ССЗ умирают 17,5 млн человек [3], к 2030 г. связанная с ними смертность увеличится до 23,3 млн человек [4—6]. ССЗ являются тяжелым социально-экономическим бременем во всех странах мира. Выявление новых факторов риска развития ССЗ и внедрение технологий их коррекции имеют большое значение для борьбы с эпидемией ССЗ.

У пациентов с ОА риск развития ССЗ повышен на 24% [7—9] вследствие общих патофизиологических механизмов, включая хроническое системное воспаление [7, 10]. У 1/2 больных ОА имеются заболевания сердца, у 53% — артериальная гипертензия (АГ), у 47% — сахарный диабет (СД) [11, 12]. Пациенты с ОА имеют более высокий риск развития хронической сердечной недостаточности (ХСН), ишемической болезни сердца (ИБС) [13] и инсульта [14]. Распространенность дислипидемии у больных ОА составляет 30,2% [15]. Факторы сердечно-сосудистого риска, в том числе ожирение, АГ, дислипидемия, СД, связаны с развитием и прогрессированием ОА [16, 17]. АГ является независимым фактором риска ОА коленного сустава (КС) [18]. ОА КС или тазобедренного сустава увеличивает риск возникновения венозной тромбоэмболии (ВТЭ) до 40 и 80% соответственно, что может быть связано с проведением эндопротезирования [19].

Установлено повышение показателей смертности от ССЗ при наличии ОА [2, 9, 13]. ОА и ССЗ значительно снижают качество жизни пожилых [20]. Ожидается существенное увеличение распространенности ОА в связи с постарением населения [21]. Распространенность ОА достигает 7% всего населения, составляя более 500 млн человек [22, 23]. К 65 годам 80% населения имеют рентгенологические признаки ОА, 60% — симптомы [24]. Распространенность ОА в России составляет 13,3% [25, 26].

Хроническими болевыми синдромами страдают 20—30% населения [27]. Установлена связь смертности от ССЗ и фибромиалгии [28], боли в нижней части спины (БНС) [29]. Смертность от ИБС увеличивается при БНС высокой степени тяжести и интенсивности, а хроническая скелетно-мышечная боль связана с тяжестью течения ИБС [30—32]. Хроническая боль связана с повышенным риском развития АГ [33]. Неконтролируемая боль связана с активацией симпатической нервной системы (СНС) и высвобождением нейромедиаторов, усиливающих нагрузку на сердечно-сосудистую систему [34]. У пациентов с ИБС и БНС существенно увеличивается применение обезболивающих препаратов.

Оптимальная стратегия ведения пациентов с хронической болью при ОА с высоким кардиоваскулярном риском требует уточнения. Нуждаются в изучении вопросы эпидемиологии и патофизиологии этих состояний, эффективности и безопасности применения препаратов с обезболивающим и противовоспалительным эффектами у больных с сочетанной патологией. Интерес вызывают фармакологические эффекты хондроитина сульфата (ХС) как болезнь-модифицирующего препарата (англ.: disease-modifying osteoarthritis drugs, DMOADs), возможность его применения при хронической боли, в том числе БНС, у пациентов с ОА и высоким кардиоваскулярным риском.

Эпидемиология ССЗ и заболеваний опорно-двигательного аппарата

Имеются данные о потенциальной связи между ОА и риском развития ССЗ. В исследовании AGES Reykjavik обнаружена линейная связь тяжести ОА кисти и выраженности атеросклероза [35]; по данным Фремингемского исследования, симптомный ОА кисти был связан с повышенным риском развития ИБС [36]. В Роттердамском исследовании показано, что выраженность инвалидизации, а не ОА, является предиктором ССЗ [37]. В результате Национального исследования состояния здоровья и питания в США установлена высокая распространенность факторов кардиоваскулярного риска у больных ОА [17]. У пациентов с ОА имеется более высокая вероятность развития ССЗ по сравнению с лицами без ОА [38]. Показано увеличение отношения шансов (ОШ) развития ИБС и сердечной недостаточности у пациентов с ОА по сравнению с лицами без ОА [39]. Наличие ОА связано с более высокими показателями смертности у пациентов с ССЗ, СД, деменцией и раком [40].

Изучена связь между наличием ОА и инфаркта миокарда (ИМ), стенокардии, ХСН и инсульта (40 817 пациентов с ОА и не страдающих ОА). Установлено, что у пациентов с ОА повышен риск развития ССЗ, а скорректированное общее ОШ (95% ДИ) составило 1,45 (1,36—1,54), 1,35 — для мужчин (1,21—1,50) и 1,51 (1,39—1,64) — для женщин с ОА. Отмечено повышение ОШ для стенокардии и ХСН как у мужчин, так и у женщин с ОА, для ИМ у мужчин и женщин ОШ (95% ДИ) составило 1,08 (0,91—1,28) и 1,49 (1,28—1,75) соответственно, для стенокардии — 1,76 (1,43—2,17) и 1,84 (1,59—2,14), для ХСН — 1,50 (1,13—1,97) и 1,81 (1,49—2,21), для инсульта — 1,08 (0,83—1,40) и 1,13 (0,93—1,37) [41]. Таким образом, наличие ОА тесно связано с риском развития стенокардии и ХСН как у мужчин, так и у женщин; ОА ассоциирован с ИМ только у женщин, но не с инсультом. Вероятность развития ССЗ на 45% выше у пациентов с ОА по сравнению с лицами того же возраста без ОА, эта связь у женщин оказалась более сильной, чем у мужчин.

Оценка связи риска развития ССЗ и ОА проведена в метаанализе результатов 15 проспективных и ретроспективных исследований. Среди 358 944 участников (ОА — n=80 911, ССЗ — n=29 213) риск развития ССЗ был выше на 24% у пациентов с ОА [8]. В систематизированный обзор и метаанализ для оценки связи ОА и риска ССЗ включены результаты 15 исследований (n=32 278 744). Распространенность всех ССЗ у больных ОА составила 38,4%, у них в 3 раза чаще развивалась ХСН (отношение рисков [ОР] 2,80; 95% ДИ 2,25—3,49) или ИБС (ОР 1,78; 95% ДИ 1,18—2,69) по сравнению с лицами без ОА. Риск транзиторных ишемических атак у больных ОА был в 3 раза ниже по сравнению с лицами без ОА, что может быть связано с гетерогенным характером исследований [13]. В серии проспективных исследований оценивалась смертность от всех причин у пациентов с ОА КС, тазобедренного сустава и кистей [36, 40, 42—46]. Оказалось, что у больных с ОА КС и тазобедренного сустава риск смерти был несколько выше, чем у лиц без ОА [47]. В результате проведенного исследования (469 177 жителей Швеции, у 15 901 — ОА КС, тазобедренных суставов и других периферических суставов) наличие ОА КС и тазобедренных суставов увеличивало ОР смерти от ССЗ до 1,19 (95% ДИ 1,10—1,28) и 1,13 (1,03—1,24) соответственно в течение 9—11 лет, в первую очередь за счет избыточной смертности от ИБС и ХСН [48]. У пациентов с ОА установлена более высокая распространенность АГ (ОШ 1,25; 95% ДИ 1,19—1,32), ожирения (ОШ 2,44; 95% ДИ 2,33—2,55), дислипидемии (ОШ 1,24; 95% ДИ 1,14—1,35) и СД (1,11, 95% ДИ 1,02—1,22) по сравнению с лицами без ОА [49].

В Индии проведено изучение оценки роли факторов риска ССЗ (возраст, индекс массы тела, систолическое артериальное давление (АД), СД, общий холестерин, липопротеины высокой плотности, курение) у пациентов с ОА КС (n=225) [50]. У пациентов с ОА КС 4-й степени средний риск по объединенному калькулятору JBS3 составляет 38%, условный возраст сердца — 82 года и ожидаемая продолжительность жизни — 77 лет по сравнению с пациентами с ОА КС 2-й степени, у которых средний риск JBS3 составил 11%, условный возраст сердца — 63 года и ожидаемая продолжительность жизни — 82 года.

Авторы систематизированного обзора и метаанализа (49 исследований, ОА — n=552 857 и контрольная группа — n=688 820) показали, что ОА тазобедренного сустава и КС увеличивал риск как субклинического атеросклероза (ОШ 1,15; 95% ДИ 1,01—1,31), так и всех ССЗ (ОШ 1,13; 95% ДИ 1,05—1,22), но не смерти от ССЗ (ОШ 1,08; 95% ДИ 0,99—1,19). ОА кистей был связан с субклиническим атеросклерозом (ОШ 1,18; 95% ДИ 1,02—1,36), но не с ССЗ (ОШ 1,49; 95% ДИ 0,90—2,46) или смертью от ССЗ (ОШ 1,02; 95% ДИ 0,73—1,44). Следовательно, наличие ОА различной локализации связано с субклиническим атеросклерозом, а с ССЗ — только ОА опорных суставов [51].

Изучение связи ОА КС с ССЗ и смертью от всех причин, а также оценка этой связи в зависимости от наличия физической активности проведены в Южной Корее. Из 201 466 участников исследования (ОА КС — n=7572; срок наблюдения 7,1±2,2 года) у 8743 развились ССЗ (ИМ — n=2510, инсульт — n=6553). Пациенты с ОА КС имели повышенный риск ССЗ (ОР 1,26; 95% ДИ 1,15—1,38], ИМ (ОР 1,20; 95% ДИ 1,00—1,44) и инсульта (ОР 1,29; 95% ДИ 1,16—1,43) по сравнению с лицами без ОА КС. У пациентов с ОА КС, которые не выполняли физические упражнения, имелось значимое повышение риска ССЗ (ОР 1,25; 95% ДИ 1,11—1,40), в то время как у пациентов с ОА КС, которые тренировались не менее 1 раза в неделю, отмечалось снижение этого риска (ОР 1,11; 95% ДИ 0,96—1,28). ОА КС был независимо связан с повышенным риском ССЗ, недостаток физической активности является дополнительным фактором развития ОА КС и ССЗ [52].

На основе генетических данных методом Менделевской рандомизации провели двухвыборочный анализ с переменными из крупномасштабного общедоступного полногеномного секвенирования GWAS и биобанка Великобритании для оценки причинно-следственной связи ОА и ССЗ [53]. Оказалось, что наличие ОА КС положительно коррелирует с венозным тромбозом и тромбоэмболией легочной артерии, а ОА тазобедренных суставов — с ишемическим инсультом, ИБС и фибрилляцией предсердий.

В метаанализе 25 обсервационных исследований с включением пациентов с различными хроническими болевыми синдромами, в том числе БНС, выявлена значимая связь хронической боли и ССЗ [34]. Также показана связь между хронической скелетно-мышечной болью и ССЗ [54]. В многочисленных долгосрочных исследованиях установлена связь хронической боли и ССЗ [7, 37, 38], которая оставалась значимой после внесения поправки на факторы сердечно-сосудистого риска [7, 31, 32, 55—60]. Пациенты с хронической локализованной и распространенной болью имели повышенный риск возникновения ИМ, ХСН, инсульта, смерти от ССЗ [61].

Таким образом, необходимы совершенствование клинических рекомендаций по лечению хронической боли у пациентов с ОА и высоким кардиоваскулярным риском, разработка вмешательств, устраняющих ограничения подвижности, позволяющих повысить уровень физической активности с применением DMOADs.

Механизмы развития хронической боли при ОА и ССЗ

С увеличением возраста значительно возрастает риск развития хронических заболеваний. Знания о мультиморбидности, описывающей сосуществование 2 или более хронических заболеваний, ограничиваются отсутствием единого определения и методического подхода к оценке их связи и определению кластерных фенотипов [62]. Растет число пациентов с хронической болью и мультифакториальными хроническими заболеваниями, связанными с высоким уровнем смертности, инвалидизации и низким качеством жизни [63]. Так называемая синдемическая теория предполагает всеобъемлющий подход к пониманию распространенности, возникновения и взаимодействия между заболеваниями [64].

Имеются доказательства связи ОА с большинством известных факторов риска ССЗ: АГ [65], СД [16], гиперхолестеринемией [66] и ожирением [67]. Системное воспаление повышает риск развития ССЗ, ревматические заболевания с острым или хроническим воспалением ассоциированы с риском ССЗ [68]. Мышечная слабость является фактором риска развития ССЗ [69], как и отсутствие физической активности [70, 71]. Показан дополнительный риск развития ССЗ у женщин с ОА и ограничением физической активности [72]. Имеется связь симптомного ОА и ССЗ, которая становилась незначительной при контроле функциональных ограничений [73].

Наиболее часто для купирования боли у пациентов с ОА и БНС назначаются нестероидные противовоспалительные препараты (НПВП), но их прием связан с повышенным риском развития сердечно-сосудистых осложнений [74]. В последние годы представления об изменениях биомеханики и структурных макроскопических нарушениях при ОА были дополнены данными о клеточных и биохимических механизмах поражения хрящевой ткани [75]. Основными морфологическими признаками ССЗ являются утолщение стенки артерий, увеличение их жесткости и атеросклеротические изменения, которые являются патогенетической основой ишемии тканей и нарушений трофики суставного хряща и вызывающей множественные инфаркты в костной ткани при ОА [76]. Генетические, метаболические и нейроэндокринные факторы повышают риск развития ОА, а активация провоспалительных цитокинов реализует системные атерогенные эффекты [77, 78].

Гиперактивация СНС и нарушения регуляции восприятия боли способствуют развитию ССЗ при хронической боли. Ее обострения связаны с повышением АД, хроническая боль может вести к гипертензионной гипоалгезии [79]. Высокая интенсивность боли — фактор риска развития ССЗ, заболеваний опорно-двигательного аппарата [80], она связана с дисфункцией антиноцицептивной системы [81] и активности центральных α2-адренергических рецепторов [33].

Механические, воспалительные, возрастные и метаболические факторы участвуют в патогенезе ОА, приводят к деструкции ткани суставов, утрате их функций и появлению хронической боли [82, 83]. Суставной хрящ не генерирует боль при ОА, однако суставные ткани (синовиальная оболочка, связки, суставная капсула, субхондральная кость) иннервированы сенсорными симпатическими нервами и могут быть источником ноцицептивной боли, в том числе БНС [84]. Остеокласты активируют чувствительные нервы в субхондральной кости, что является причиной боли при ОА [85, 86]. Локальные жировые отложения, последствия микропереломов субхондральной кости, синовит, образование остеофитов и внутрикостная гипертензия связаны с возникновением боли при ОА [87—89].

Периферические ноцицепторы являются молекулярными преобразователями негативных раздражителей, стимулирующих ионные каналы: переходного рецепторного потенциала (TRP), в том числе TRP ваниллоид 1 (TRPV1), TRP меластатин 3 (TRPM3), TRP анкирин 1 (TRPA1), потенциал-зависимые натриевые каналы (Nav1.8 и Nav1.7) [90]. При воздействии раздражителей происходит активация этих рецепторов с высвобождением кальцитонин-ген-родственного пептида (КГРП) и субстанции P [91]. В дальнейшем болевая импульсация передается к ганглиям задних корешков, где располагаются тела сенсорных нейронов, и в задние рога спинного мозга, что приводит к повышению активности CCL2, NLRP3 и Wnt/β-катенина. Восходящие пути активируют структуры ЦНС и приводят к сознательному восприятию боли [92].

Боль при ОА обусловлена как ноцицептивными, так и нейропатическими механизмами [93] и может быть связана со структурным повреждением тканей [94]. Медиаторы воспаления играют ключевую роль в патогенезе ОА [95], в суставную жидкость выделяются провоспалительные интерлейкины (ИЛ-1β, -6), фактор некроза опухоли-альфа (ФНО-α), фактор роста нервов (ФРН), хемокины и фракталин [96]. Наличие стойких болевых ощущений при ОА приводит к центральной и периферической сенситизации и гипералгезии. Увеличение синовиальной экспрессии ФРН, высокие уровни серотонина, дофамина и их метаболитов в цереброспинальной жидкости положительно коррелируют с тяжестью боли и уровнем центральной сенситизации при ОА [97, 98].

ФРН, стимулирующий рост симпатических нервных волокон, опосредует передачу болевого сигнала, что приводит к сенситизации нервной системы. ФРН активируется ФНО-α и может синтезироваться другими клетками суставных тканей при ОА (макрофаги, тучные клетки, синовиоциты) [99, 100]. ФРН активирует рецептор TrkA, который поглощается эндосомами и подвергается ретроградному транспорту от дистального отдела аксона к телу клетки в ганглии заднего корешка. Это приводит к высвобождению воспалительных медиаторов и стимуляции TRPV1 и Nav1.8 с активацией еще большего количества нейронов. ФРН активирует экспрессию вещества P и мозгового нейротрофического фактора, способствующих центральной сенситизации [101]. Экспрессия макрофагов CD14 в синовиальной оболочке при ОА тазобедренного сустава увеличивается при высокой концентрации ФРН, что приводит к локальной стойкой боли в суставах и центральной сенситизации [102].

Активируемый ФРН КГРП экспрессируется в отделах периферической и центральной нервной системы с наибольшим количеством ноцицептивных нейронов (ганглий заднего корешка, нервные волокна, проецирующиеся в задние рога спинного мозга) [103]. КГРП может вызывать вазодилатацию, влиять на периферическую болевую сенситизацию, играет критическую роль в нейрогенном воспалении и генерации боли [104]. ИЛ-1β, участвующий в хроническом воспалении слабой интенсивности при ОА [105], увеличивает экспрессию ФРН, который опосредует генез боли и активацию СНС [106]. Инфламмасома NLRP3 включена в рецепторы врожденной иммунной системы, участвует в регуляции активности ИЛ-1β [107], функция которой нарушается при ОА и способствует возникновению хронической боли [108]. Аберрантная активация передачи сигналов Wnt вызывает хроническую боль при повышенной экспрессии провоспалительных цитокинов и хемокинов, активирует макрофаги, клетки микроглии и астроциты [109—111].

Гиперактивация СНС у пациентов с хронической болью может быть связана с прямым воздействием ноцицептивной стимуляции симпатических преганглионарных нейронов, также имеется центральная нейронная сеть, опосредующая гиперактивацию СНС при хронической боли [112]. Гиперактивация СНС увеличивает заболеваемость ССЗ и смертность от них [113]. Хроническая гиперактивация СНС приводит к АГ, ИБС, ХСН [114], способствует развитию атеросклероза, индуцируя агрегацию тромбоцитов и механическое повреждение эндотелия сосудов при повышении АД [115].

СНС связана с подкорковыми сруктурами (околоводопроводное серое вещество, большое ядро шва и ядра гипоталамуса), участвующими в вегетативной регуляции [116]. Структуры передней поясной и островковой коры формируют связь болевой, вегетативной и двигательной систем посредством формирования мотивации и эмоций, связанных с болью [117, 118]. Активность спинальных симпатических рефлекторных систем приводит к прямой активации симпатических преганглионарных нейронов в интермедиолатеральных столбах по восходящим ноцицептивным путям, является механизмом гиперактивации СНС при хронической боли [119]. Другой механизм, посредством которого хроническая боль может повышать активность СНС, обусловлен хроническим когнитивным или эмоциональным стрессом, проявляется острым повреждением миокарда, повышенной предрасположенностью к внезапной сердечной смерти [120—122].

У пациентов с хронической болью отмечается утрата серого вещества в корковых и подкорковых структурах [123]. При хронической боли повышена базовая активность дорсолатеральной префронтальной коры [124], у здоровых людей ее транскраниальная стимуляция приводила к увеличению активности СНС и повышению АД [125]. Специфические нейрональные ансамбли в медиальной префронтальной коре имеют решающее значение для обработки ноцицептивной информации и регуляции процесса хронизации боли [126]. Общий нисходящий тормозной путь, чувствительный к барорецепторам, регулирует спинальную передачу афферентной ноцицептивной информации и эфферентной симпатической активности, поэтому изменения в центральной тормозной сети проявляются усилением боли и повышенной симпатической активностью [127]. В синовиальной жидкости при ОА преобладают липотоксические жирные кислоты, вызывающие апоптоз хондроцитов и синтез провоспалительных и катаболических медиаторов [128, 129].

Таким образом, анализ ключевых механизмов развития хронической боли, ОА и ССЗ свидетельствует о наличии общих универсальных молекулярных путей.

Современные стратегии ведения пациентов с хронической болью при ОА и кардиоваскулярным риском

Оптимальная стратегия скрининга пациентов с ОА и кардиоваскулярным риском остается недостаточно ясной. Учитывая наличие факторов риска у пациентов с ОА, представляется целесообразной оценка 10-летнего риска смертельного ССЗ у этих пациентов с использованием шкалы SCORE [130].

Первичная медико-санитарная помощь — важный этап выявления и коррекции факторов риска и первичной профилактики ССЗ у больных ОА [131]. Электронная медицинская карта (ЭМК) — уникальный источник информации о состоянии здоровья пациентов с высоким риском, у которых стратегии по снижению бремени ССЗ могут оказаться наиболее эффективными [132, 133]. В России представлен новый инструмент прогнозирования течения и фенотипирования ОА — шкала для выявления пациентов с высоким риском формирования и прогрессирования ОА с чувствительностью 88% и специфичностью 100% [134]. Неотъемлемыми элементами профилактики и лечения ССЗ являются изменение образа жизни и интенсивное управление факторами риска у пациентов с ОА и высокой вероятностью кардиоваскулярных событий. За счет изменения образа жизни и модификации других факторов риска смертность от ИБС снижается до 50% [135]. Мероприятия по изменению образа жизни этих пациентов прежде всего предусматривают усиление физической активности [136]. Эффективность физической активности сравнима с фармакологическими вмешательствами в отношении предотвращения исходов ССЗ [137], подтверждена ее значимость в отношении снижения боли и инвалидизации [138].

Пациенты, перенесшие хирургическое вмешательство по поводу ОА, в частности гряд межпозвонкового диска, имеют повышенный риск пери- и послеоперационных осложнений (ВТЭ, ИМ и инфекции). Внедрение новых методов медикаментозной подготовки к эндопротезированию суставов и терапии в период послеоперационной реабилитации, в том числе применение DMOADs, например парентеральной формы ХС (Хондрогард, ЗАО «ФармФирма «Сотекс», Россия), позволяет улучшить исходы эндопротезирования и снизить частоту развития кардиоваскулярных событий при ОА [139].

Важным фактором, который следует учитывать при наличии у пациента коморбидности в виде сочетания ОА и ССЗ, является кардиотоксичность некоторых НПВП (рофекоксиб, эторикоксиб, диклофенак, ибупрофен и некоторые другие) [140]. У пациентов с сердечно-сосудистыми заболеваниями предпочтение следует отдавать тем НПВП, которые не повышают риск сердечно-сосудистых осложнений (например, мелоксикам (Амелотекс)) [140]. Существующие стратегии лечения атеросклероза направлены на облегчение симптомов и предотвращение кардиоваскулярных событий путем модификации факторов риска, фармакологического или оперативного лечения [141]. Вместе с тем глобальное бремя заболеваний, связанных с атеросклерозом, в том числе сочетание хронической боли при ОА и ССЗ, остается высоким [142]. Очевидна необходимость разработки оптимальной стратегии ведения пациентов с хронической болью при ОА и кардиоваскулярным риском на основе ЭМК и прогностических шкал, а также новых методов ведения этих пациентов с активным воздействием на факторы риска, первичной и вторичной лекарственной профилактики, включающей DMOADs.

Механизмы действия и фармакологические эффекты ХС при хронической боли у пациентов с заболеваниями скелетно-мышечной системы и кардиоваскулярным риском

ХС — природный гликозаминогликан, содержащийся преимущественно во внеклеточном матриксе, окружающем хондроциты, связках, сухожилиях, кровеносных сосудах и коже [143]. Сегодня высокоочищенный ХС, имеющий высокий уровень доказанной симптоматической и болезнь-модифицирующей эффективности при ОА [144, 145], включен в рекомендации ACR для лечения ОА кисти [146], EULAR и ESCEO для лечения ОА КС [147—149], клинические рекомендации Минздрава России по лечению больных ОА КС и тазобедренного сустава, при хронической боли у пациентов пожилого и старческого возраста [150—153].

Терапевтический эффект ХС связан с его противовоспалительной активностью в хондроцитах и синовиальных клетках. ХС уменьшает ядерную транслокацию NF-kB и синтез нескольких провоспалительных медиаторов (ЦОГ-2, eNOS, ИЛ-1β, ФНО-α и др.) [154]. ХС показал противовоспалительный эффект при атеросклерозе [155].

В популяционном исследовании по типу «случай-контроль», включившем в Испании 3 764 470 респондентов (из них 23 000 случаев острого ИМ), было показано, что применение ХС связано со снижением на 40% риска острого ИМ. Эффект наблюдался как в краткосрочной, так и в долгосрочной перспективе как у мужчин, так и у женщин, независимо от возраста. Аналогичный эффект наблюдался у пациентов с промежуточным и высоким кардиоваскулярным риском, но не с низким риском. Эффект наблюдался как у пациентов, не принимающих НПВП, так и при одновременном применении НПВП [156].

ХС может быть эффективным средством профилактики ССЗ и снижения смертности [157—160]. Сравнительное исследование влияния изомеров ХС (хондроитин-4-сульфат, хондроитин-6-сульфат и хондроитина полисульфат), которые назначались перорально по 4,5 г/сут, на развитие атеросклероза было выполнено с участием 48 пожилых пациентов. Смертность в группах, получавших изомеры ХС, была ниже, чем в группе сравнения (пациенты того же возраста, не получавшие ХС). Уровень холестерина в сыворотке крови в группе пациентов, принимавших ХС, оказался статистически значимо ниже значения до лечения. В группе пациентов, получавших ХС, время образования тромба увеличилось на 150%, у них же была значимо ниже конечная масса тромба [161].

В исследовании по типу «случай—контроль» продемонстрировано, что у пациентов с ОА, постоянно получающих ХС, наблюдается низкая частота коронарных событий [162]. В экспериментальном исследовании ХС снижал экспрессию молекул адгезии сосудистых клеток, клеточных молекул адгезии и эфрина B2, повышал миграцию эндотелиоцитов в очаг воспаления. ХС ингибирует образование пенистых клеток и экспрессию CD36 и CD146 in vivo, как и поглощение и накопление окисленных липопротеинов низкой плотности в культивируемых активированных моноцитах человека и макрофагах. Считается, что кардиопротективные эффекты ХС связаны с модуляцией провоспалительной активации эндотелия и моноцитов, образования пенистых клеток [163].

Контроль длины ХС на макрофагах может рассматриваться в качестве метода терапии, препятствующего развитию атеросклероза. Выявлен ген ChGn-2, играющий ключевую роль в патогенезе атеросклероза. Делеция гена ChGn-2, отвечающего за синтез двух ферментов (хондроитинсульфат N-ацетил-галактозаминил-трансферазы-2 и хондроитин-4-сульфотрансферазы-1), регулирующих удлинение цепи ХС, приводит к уменьшению формирования и размеров атеросклеротических бляшек in vivo. Перитонеальные макрофаги, лишенные гена ChGn-2 и ChGn-2-молчащие макрофаги RAW264 в меньшей степени образуют пенистые клетки. Следовательно, выявлен атерозащитный фенотип мышей с отсутствием гена ChGn-2 и макрофагами с измененным поверхностным связыванием oxLDL при наличии гена ChGn-2 [164].

ХС, защищая эндотелиальные клетки, может ослабить механизмы контроля свертывания крови. Метаболизм эндогенного ХС может быть нарушен у пациентов с наклонностью к гиперкоагуляции, связанной с 16 консервативными, редкими миссенс- и нонсенс-вариантами в генах, участвующих в метаболизме ХС (CHPF, CHPF2, CHST3, CHST12, CHST15, SLC26A2, PAPSS2, STAB2) и формирующими разные варианты ХС с неодинаковым уровнем сульфатации [165, 166]. ХС имеет решающее значение для способности тромбомодулина ингибировать активность тромбина: добавление ХС увеличивает его эффективность в инактивации тромбина как минимум в 5 раз по сравнению с тромбомодулином без цепи ХС [167]. Снижение сульфатации ХС в высокомолекулярных протеогликанах при прогрессирующем атеросклерозе предрасполагает к появлению тромбоза посредством нарушения осмотической регуляции, ограничения авидности антитромбина и снижения эффективности его активации [168—170].

Заключение

Таким образом, анализ результатов экспериментальных и клинических исследований о потенциальных кардио-, вазопротективном и антитромботическом эффектах ХС свидетельствует о перспективах эффективного и безопасного применения парентеральной формы ХС при хронической боли у больных ОА и с кардиоваскулярным риском. Для подтверждения полученных выводов о механизмах действия высокоочищенного ХС необходимы дальнейшие исследования и разработка стратегий профилактики, мониторинга и лечения с целью уменьшения бремени болезни у пациентов с хронической болью при ОА КС или тазобедренных суставов, БНС с кардиоваскулярным риском.

Высокая распространенность ОА и ССЗ среди населения, связь между ОА и ССЗ при наличии хронической боли имеют существенное клиническое и социоэкономическое значение. В популяции лиц среднего возраста в России необходимо рассмотреть возможность ускоренного внедрения скрининга на вероятность появления ОА и признанные факторы риска ССЗ на основе ЭМК и современных инструментов скрининга с целью своевременного применения методов немедикаментозной и медикаментозной профилактики, терапии, хирургических вмешательств для снижения частоты сердечно-сосудистых событий. Учитывая, что хроническая боль при ОА и ССЗ преобладают в пожилом возрасте, важно рассматривать эти группы заболеваний вместе на основе синдемического подхода. Врачи общей практики, терапевты, врачи-специалисты должны учитывать кардиоваскулярный риск при назначении НПВП пациентам с хронической болью при ОА. Изучение возможности применения высокоочищенного ХС в исследованиях, соответствующих требованиям доказательной медицины, в зарубежных и отечественных рандомизированных клинических исследованиях в части симптоматического и болезнь-модифицирующего эффектов при хронической боли у пациентов с ОА и представленные потенциальные кардио-, вазопротективный и антитромботический эффекты ХС свидетельствуют о перспективах применения парентеральной формы ХС (Хондрогард, ЗАО «ФармФирма «Сотекс», Россия) по показанию «хроническая боль при ОА и кардиоваскулярном риске».

Авторы заявляют об отсутствии конфликта интересов.

Литература / References:

  1. Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: Estimates from the global burden of disease 2010 study. Annals of the Rheum Dis. 2014;73(7):1323-1330. https://doi.org/10.1136/annrheumdis-2013-204763
  2. Roth G, Johnson C, Abajobir A, et al. Global regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1-25.  https://doi.org/10.1016/j.jacc.2017.04.052
  3. Mortality GBD, Causes of Death C. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117-171.  https://doi.org/10.1016/S0140-6736(14)61682-2
  4. Ryan C, McDonough S, Kirwan J, et al. An investigation of association between chronic musculoskeletal pain and cardiovascular disease in the Health Survey for England (2008). Eur J Pain.2014;18(5):740-750.  https://doi.org/10.1002/j.1532-2149.2013.00405.x
  5. Goodson N, Smith B, Hocking L, et al. Cardiovascular risk factors associated with the metabolic syndrome are more prevalent in people reporting chronic pain: Results from a cross-sectional general population study. Pain. 2013;154:1595-1602. https://doi.org/10.1016/j.pain.2013.04.043
  6. Kerkhoff A, Moreira L, Fuchs F, et al. Association between hypertension and musculoskeletal complaints: A population-based study. J. Hypertens. 2012;30(11):2112-2117. https://doi.org/10.1097/HJH.0b013e3283588268
  7. Rahman M, Kopec J, Anis A, et al. Risk of cardiovascular disease in patients with osteoarthritis: A prospective longitudinal study. Arthritis Care Res. 2013;65(12):1951-1958. https://doi.org/10.1002/acr.22092
  8. Wang H, Bai J, He B, et al. Osteoarthritis and the risk of cardiovascular disease: A meta-analysis of observational studies. Sci Rep. 2016;6:39672. https://doi.org/10.1038/srep39672
  9. Williams A, Kamper S, Wiggers J, et al. Musculoskeletal conditions may increase the risk of chronic disease: A systematic review and meta-analysis of cohort studies. BMC Med. 2018;16(1):167.  https://doi.org/10.1186/s12916-018-1151-2
  10. Provan S, Rollefstad S, Ikdahl E, et al. Biomarkers of cardiovascular risk across phenotypes of osteoarthritis. BMC Rheumatol. 2019;3:33.  https://doi.org/10.1186/s41927-019-0081-8
  11. Barbour K, Boring M, Helmick C, et al. Prevalence of severe joint pain among adults with doctor-diagnosed arthritis — United States, 2002-2014. Morbidity and Mortality Weekly Report. 2016;65(39):1052-1056. https://doi.org/10.15585/mmwr.mm6539a2
  12. Arthritis Foundation. Osteoarthritis May Raise Heart Disease Risk. Retrieved from https://www.arthritis.org/living-with-arthritis/comorbidities/heart-disease/osteoarthritis-ups-cvd-risk.php
  13. Hall A, Stubbs B, Mamas M, et al. Association between osteoarthritis and cardiovascular disease: Systematic review and meta-analysis. Eur J Prev Cardiol. 2016;23(9):938-946.  https://doi.org/10.1177/2047487315610663
  14. Hsu P, Lin H, Li C, Chung W. Increased risk of stroke in patients with osteoarthritis: A population-based cohort study. Osteoarth Cart. 2017;25(7):1026-1031. https://doi.org/10.1016/j.joca.2016.10.027
  15. Baudart P, Louati K, Marcelli C, et al. Association between osteoarthritis and dyslipidaemia: a systematic literature review and meta-analysis. RMD Open. 2017;1:3(2):e00044. https://doi.org/10.1136/rmdopen-2017-000442
  16. Louati K, Vidal C, Berenbaum F, Sellam J. Association between diabetes mellitus and osteoarthritis: systematic literature review and meta-analysis. RMD Open. 2015;1:1(1):e000077. https://doi.org/10.1136/rmdopen-2015-000077
  17. Singh G, Miller J, Lee F, et al. Prevalence of cardiovascular disease risk factors among US adults with self-reported osteoarthritis: data from the Third National Health and Nutrition Examination Survey. Population. 2002;7:17. 
  18. Bijlsma J, Berenbaum F, Lafeber F. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377(9783):2115-2126. https://doi.org/10.1016/S0140-6736(11)60243-2
  19. Zeng C, Bennell K, Yang Z, et al. Risk of venous thromboembolism in knee, hip and hand osteoarthritis: A general population-based cohort study. Ann Rheum Dis. 2020;79(12):1616-1624. https://doi.org/10.1136/annrheumdis-2020-217782
  20. Booker SQ, Content VG. Chronic Pain, Cardiovascular Health, and Related Medication Use in Aging African Americans with Osteoarthritis. J Clin. Nurs. 2020;29(13-14):2675-2690. https://doi.org/10.1111/jocn.15292
  21. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study. Lancet. 2018;392(10159):1789-858.  https://doi.org/10.1016/S0140-6736(18)32279-7
  22. Hunter D, March L, Chew M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet. 2020;396(10264):1711-1712. https://doi.org/10.1016/S0140-6736(20)32230-3
  23. Vos T, Flaxman A, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163-2196. https://doi.org/10.1016/S0140-6736(12)61729-2
  24. Green G. Understanding NSAIDs: from aspirin to COX-2. Clin Corn. 2001;3(5):50-60.  https://doi.org/10.1016/s1098-3597(01)90069-9
  25. Галушко Е.А., Эрдес Ш.Ф., Алексеева Л.И. Остеоартроз в амбулаторной практике. Современная ревматология. 2012;6(4):66-70.  https://doi.org/10.14412/1996-7012-2012-766
  26. Turkiewicz A, Petersson I, Björk J, et al. Current and future impact of osteoarthritis on health care: A population-based study with projections to year 2032. Osteoarth Cart. 2014;22(11):1826-1832. https://doi.org/10.1016/j.joca.2014.07.015
  27. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204-1222. https://doi.org/10.1016/S0140-6736(20)30925-9
  28. van der Burg L, Boonen A, van Amelsvoort L, et al. Effects of cardiovascular comorbidities on work participation in rheumatic diseases: A prospective cohort study among working individuals. Arthritis Care Res. 2014;66(1):157-163.  https://doi.org/10.1002/acr.22095
  29. Ha I, Lee J, Kim M, Kim H, et al. The association between the history of cardiovascular diseases and chronic low back pain in South Koreans: A cross-sectional study. PLoS One. 2014;9(4):e9367. https://doi.org/10.1371/journal.pone.0093671
  30. Vogt M, Nevitt M, Cauley J. Back Problems and Atherosclerosis. Pittsburgh: Lippincott-Raven. 1997.
  31. Von Korff M, Crane P, Lane M, et al. Chronic spinal pain and physical-mental comorbidity in the United States: Results from the national comorbidity survey replication. Pain. 2005;113(3):331-339.  https://doi.org/10.1016/j.pain.2004.11.010
  32. Andersson H. Increased mortality among individuals with chronic widespread pain relates to lifestyle factors: a prospective population-based study. Disabil Rehabil. 2009;31(24):1980-1987. https://doi.org/10.3109/09638280902874154
  33. Bruehl S, Ok Y, Jirjis J, Biridepalli S. Prevalence of clinical hypertension in patients with chronic pain compared to nonpain general medical patients. Clin J Pain. 2005;21(2):147-153.  https://doi.org/10.1097/00002508-200503000-00006
  34. Alan F, Ayis S, Panesar S, Langford R, Donaldson L. Assessing the relationship between chronic pain and cardiovascular disease: A systematic review and meta-analysis. Scand J Pain. 2016;13:76-90.  https://doi.org/10.1016/j.sjpain.2016.06.005
  35. Jonsson H, Helgadottir GP, Aspelund T, et al. Hand osteoarthritis in older women is associated with carotid and coronary atherosclerosis: the AGES Reykjavik study. Ann Rheum Dis. 2009;68(11):1696-1700. https://doi.org/10.1136/ard.2008.096289
  36. Haugen IK, Ramachandran VS, Misra D, et al. Hand osteoarthritis in relation to mortality and incidence of cardiovascular disease: data from the Framingham heart study. Ann Rheum Dis. 2015;74(1):74-81.  https://doi.org/10.1136/annrheumdis-2013-203789
  37. Hoeven TA, Leening MJ, Bindels PJ, et al. Disability and not osteoarthritis predicts cardiovascular disease: a prospective population-based cohort study. Ann Rheum Dis. 2015;74(4):752-756.  https://doi.org/10.1136/annrheumdis-2013-204388
  38. Ong K, Wu B, Cheung B, et al. Arthritis: its prevalence, risk factors, and association with cardiovascular diseases in the United States, 1999 to 2008. Ann Epidemiol. 2013;23(2):80-86.  https://doi.org/10.1016/j.annepidem.2012.11.008
  39. Kadam U, Jordan K, Croft P. Clinical comorbidity in patients with osteoarthritis: a case-control study of general practice consulters in England and Wales. Ann Rheum Dis. 2004;63(4):408-414.  https://doi.org/10.1136/ard.2003.007526
  40. Nuesch E, Dieppe P, Reichenbach S, et al. All cause and disease specific mortality in patients with knee or hip osteoarthritis: population based cohort study. BMJ. 2011;342:d1165. https://doi.org/10.1136/bmj.d1165
  41. Rahman M, Kopec J, Cibere J, et al. The relationship between osteoarthritis and cardiovascular disease in a population health survey: a cross-sectional study. BMJ Open. 2013;3(5):e002624. https://doi.org/10.1136/bmjopen-2013-002624
  42. Turkiewicz A, Neogi T, Bjork J, et al. All-cause mortality in knee and hip osteoarthritis and rheumatoid arthritis. Epidemiol. 2016;27(4):479-485.  https://doi.org/10.1097/EDE.0000000000000477
  43. Hochberg M. Mortality in osteoarthritis. Clin Exp Rheumatol. 2008;26(5 Suppl 51):S120-S124.
  44. Barbour K, Lui L-Y, Nevitt M, et al. Hip osteoarthritis and the risk of all-cause and disease-specific mortality in older women: population-based cohort study. Art Rheumatol. 2015;67(7):1798-1805. https://doi.org/10.1002/art.39113
  45. Haara M, Manninen P, Kroger H, et al. Osteoarthritis of finger joints in Finns aged 30 or over: prevalence, determinants, and association with mortality. Ann Rheum Dis. 2003;62(2):151-158.  https://doi.org/10.1136/ard.62.2.151
  46. Xing D, Xu Y, Liu Q, et al. Osteoarthritis and all-cause mortality in worldwide populations: grading the evidence from a meta-analysis. Sci Rep. 2016;18;6:24393. https://doi.org/10.1038/srep24393
  47. Hawker G, Croxford R, Bierman A, et al. All-cause mortality and serious cardiovascular events in people with hip and knee osteoarthritis: a popula tion based cohort study. PLoS One. 2014;9(3):e91286. https://doi.org/10.1371/journal.pone.0091286
  48. Turkiewicz A, Kiadaliri F, Englund M. Cause-specific mortality in osteoarthritis of peripheral joints. Osteoarthritis Cart. 2019;27(6):848-854.  https://doi.org/10.1016/j.joca.2019.02.793
  49. Huang X, Wilkie R, Mamas MYuD. Prevalence of Cardiovascular Risk Factors in Osteoarthritis Patients Derived from Primary Care Records: A Systematic Review of Observational Studies. J Diabetes Clin Res. 2021;3(3):68-77.  https://doi.org/10.33696/diabetes.3.042
  50. Goel S, Kamath S, Annappa R, et al. Cross-sectional assessment of cardiovascular risk factors in patients with knee osteoarthritis. Ann Rheum Dis. 2004;63(3):144-149. 
  51. Macêdo M, Santos V, Pereira R, Fuller R. Association between osteoarthritis and atherosclerosis: A systematic review and meta-analysis. Exp Gerontol. 2022;161:111734. https://doi.org/10.1016/j.exger.2022.111734
  52. Park D, Park Y, Ko S, et al. Association between knee osteoarthritis and the risk of cardiovascular disease and the synergistic adverse efects of lack of exercise. Nature Sci Rep. 2023;13(1):2777. https://doi.org/10.1038/s41598-023-29581-1
  53. Wang Sh, Liu Y, Wu K, et al. Osteoarthritis and risk of cardiovascular diseases: A Mendelian randomization study. Injury. 2023;S0020-1383(23)00282-6.  https://doi.org/10.1016/j.injury.2023.03.026
  54. Oliveira C, Maher C, Franco M, et al. Co-occurrence of Chronic Musculoskeletal Pain and Cardiovascular Diseases: A Systematic Review with Meta-analysis. Pain Med. 2020;21:1106-1121. https://doi.org/10.1093/pm/pnz217
  55. Macfarlane G, Barnish M, Jones G. Persons with chronic widespread pain experience excess mortality: Longitudinal results from UK Biobank and meta-analysis. Ann Rheum Dis. 2017;76:1815-1822. https://doi.org/10.1136/annrheumdis-2017-211476
  56. Holmberg T, Davidsen M, Thygesen L, et al. Mortality among persons experiencing musculoskeletal pain: A prospective study among Danish men and women. BMC Musculoskelet Disord. 2020;21(8):666-669.  https://doi.org/10.1186/s12891-020-03620-8
  57. Tesarz J, Eich W, Baumeister D, et al. Widespread pain is a risk factor for cardiovascular mortality: Results from the Framingham Heart Study. Eur Heart J. 2019;40(9):1609-1617. https://doi.org/10.1093/eurheartj/ehz111
  58. Rodríguez-Sánchez I, Ortolá R, Graciani A, et al. Pain characteristics, cardiovascular risk factors, and cardiovascular disease. J Gerontol 2022;77(1):204-213.  https://doi.org/10.1093/gerona/glab079
  59. Kendzerska T, Jüni P, King L, et al. The longitudinal relationship between hand, hip and knee osteoarthritis and cardiovascular events: A population-based cohort study. Osteoarthr Cartil. 2017;25(11):1771-1780. https://doi.org/10.1016/j.joca.2017.07.024
  60. Atiquzzaman M, Karim M, Kopec J, et al. Role of nonsteroidal antiinflammatory drugs in the association between osteoarthritis and cardiovascular diseases: A longitudinal study. Arth Rheumatol. 2019;71(11):1835-1843. https://doi.org/10.1002/art.41027
  61. Rönnegård A-S, Nowak C, Äng B, Ärnlöv J. The association between short-term, chronic localized and chronic widespread pain and risk for cardiovascular disease in the UK Biobank. Eur J Prev Cardiol. 2022;29(15):1994-2002. https://doi.org/10.1093/eurjpc/zwac127
  62. Johnston M, Crilly M, Black C, et al. Defining and measuring multimorbidity: A systematic review of systematic reviews. Eur J Pub Health. 2019;29(1):182-189.  https://doi.org/10.1093/eurpub/cky098
  63. Baker T, Clay O, Johnson-Lawrence V, et al. Association of multiple chronic conditions and pain among older Black and White adults with diabetes mellitus. BMC Geriat. 2017;17(1):255.  https://doi.org/10.1186/s12877-017-0652-8
  64. Singer M, Bulled N, Ostrach B, Mendenhall E. Syndemics and the biosocial conception of health. Lancet. 2017;389(10072):941-950.  https://doi.org/10.1016/S0140-6736(17)30003-X
  65. Puenpatom R, Victor T. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. Postgrad Med. 2009;121:9-20.  https://doi.org/10.3810/pgm.2009.11.2073
  66. Hart D, Doyle D, Spector T. Association between metabolic factors and knee osteoarthritis in women: the Chingford Study. J Rheum. 1995;22(6):1118-1123.
  67. Yusuf E, et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann Rheum Dis. 2010;69(4):761-765.  https://doi.org/10.1136/ard.2008.106930
  68. van Leuven S, Franssen R, Kastelein J, et al. Systemic inflammation as a risk factor for atherothrombosis. Rheumatol (Oxford). 2008;47(1):3-7.  https://doi.org/10.1093/rheumatology/kem202
  69. Li J, Siegrist J. Physical activity and risk of cardiovascular disease—a meta-analysis of prospective cohort studies. Int J Environ Res Public Health. 2012;9(2):391-407.  https://doi.org/10.3390/ijerph9020391
  70. Shiroma E, Lee I. Physical activity and cardiovascular health: lessons learned from epidemiological studies across age, gender, and race/ethnicity. Circulation. 2010;122(7):743-752.  https://doi.org/10.1161/CIRCULATIONAHA.109.914721
  71. Corsi M, Alvarez C, Callahan LF, et al. Contributions of symptomatic osteoarthritis and physical function to incident cardiovascular disease. BMC Musculoskel Dis. 2018;19(1):393.  https://doi.org/10.1186/s12891-018-2311-4
  72. Schieir O, Hogg-Johnson S, Glazier R, Badley E. Sex variations in the effects of arthritis and activity limitation on first heart disease event occurrence in the Canadian general population: results from the longitudinal National Population Health Survey. Arthritis Care Res (Hoboken). 2016;68(6):811-818.  https://doi.org/10.1002/acr.22764
  73. King L, Kendzerska T, Hawker G. The Relationship Between Osteoarthritis and Cardiovascular Disease: Results from a Population-Based Cohort. American College of Rheumatology Annual Scientific Meeting. 2015;67:954. 
  74. Marsico F, Paolillo S, Filardi P. NSAIDs and cardiovascular risk. J Cardiovasc Med. 2017;18(Suppl. 1):e40-e43.  https://doi.org/10.2459/JCM.0000000000000443
  75. Haq I, Murphy E, Dacre J. Osteoarthritis. Postgrad Med J. 2003;79(933):377-383.  https://doi.org/10.1136/pmj.79.933.377
  76. Cheras P, Freemont A, Sikorski J. Intraosseous thrombosis in ischemic necrosis of bone and osteoarthritis. Osteoarth Cart. 1993;1(4):219-232.  https://doi.org/10.1016/s1063-4584(05)80328-0
  77. Iannone F, Lapadula G. Obesity and inflammation targets for OA therapy. Curr Drug Targ. 2010;11(5):586-598.  https://doi.org/10.2174/138945010791011857
  78. Findlay D. Vascular pathology and osteoarthritis. Rheumatol. 2007;46(12):1763-1768. https://doi.org/10.1093/rheumatology/kem191
  79. Saccò M, Meschi M, Regolisti G, et al. The relationship between blood pressure and pain. J Clin Hypert (Greenwich). 2013;15(8):600-605.  https://doi.org/10.1111/jch.12145
  80. Gordon J, Johnson J, Nau S, et al. The role of chronic psychosocial stress in explaining racial differences in stress reactivity and pain sensitivity. Psychosom Med. 2017;79(2):201-212.  https://doi.org/10.1097/PSY.0000000000000385
  81. Alan F, Watt H, Langford R, Donaldson L. The association between chronic pain and cardiac disease: A cross-sectional population study. Clin J Pain. 2016;32(12):1062-1068. https://doi.org/10.1097/AJP.0000000000000359
  82. Lu K, Ma F, Yi D, et al. Molecular signaling in temporomandibular joint osteoarthritis. J Orthop Transl. 2022;32:21-27.  https://doi.org/10.1016/j.jot.2021.07.001
  83. Yao X, Sun K, Yu S, et al. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Transl. 2021;27:33-43.  https://doi.org/10.1016/j.jot.2020.09.006
  84. Salaffi F, Ciapetti A, Carotti M. The sources of pain in osteoarthritis: A pathophysiological review. Reumatismo. 2014;66(1):57-71.  https://doi.org/10.4081/reumatismo.2014.766
  85. Morgan M, Thai J, Nazemian V, et al. Changes to the activity and sensitivity of nerves innervating subchondral bone contribute to pain in late-stage osteoarthritis. Pain. 2022;163(2):390-402.  https://doi.org/10.1097/j.pain.0000000000002355
  86. Zhu S, Zhu J, Zhen G, et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Investig. 2019;129(3):1076-1093. https://doi.org/10.1172/JCI121561
  87. Hill C, Gale D, Chaisson C, et al. Knee effusions, popliteal cysts, and synovial thickening: Association with knee pain in osteoarthritis. J Rheumatol. 2001;28(6):1330-1337.
  88. Simkin P. Bone pain and pressure in osteoarthritic joints. Novartis Found Symp. 2004;260:179-186; discussion 186-190, 277-279. 
  89. Belluzzi E, Macchi V, Fontanella C, et al. Infrapatellar fat pad gene expression and protein production in patients with and without osteoarthritis. Int J Mol Sci. 2020;21(17):6016. https://doi.org/10.3390/ijms21176016
  90. Bamps D, Vriens J, de Hoon J, Voets T. TRP channel cooperation for nociception: Therapeutic opportunities. Ann Rev Pharmacol Toxicol. 2021;61:655-677.  https://doi.org/10.1146/annurev-pharmtox-010919-023238
  91. Stockl S, Eitner A, Bauer R, et al. Substance P and Alpha-calcitonin gene-related peptide differentially affect human osteoarthritic and healthy chondrocytes. Front Immunol. 2021;12:722884. https://doi.org/10.3389/fimmu.2021.722884
  92. Soni A, Wanigasekera V, Mezue M, et al. Central sensitization in knee osteoarthritis: Relating presurgical brainstem neuroimaging and PainDETECT-based patient stratification to arthroplasty outcome. Arth Rheumatol. 2019;71(4):550-560.  https://doi.org/10.1002/art.40749
  93. Fu K, Robbins S, McDougall J. Osteoarthritis: The genesis of pain. Rheumatol. 2018;57(suppl_4):iv43-iv50. https://doi.org/10.1093/rheumatology/kex419
  94. Eitner A, Hofmann G, Schaible H. Mechanisms of osteoarthritic pain. Studies in humans and experimental models. Front Mol Neurosci. 2017;10:349.  https://doi.org/10.3389/fnmol.2017.00349
  95. Dainese P, Wyngaert K, De Mits S, et al. Association between knee inflammation and knee pain in patients with knee osteoarthritis: A systematic review. Osteoarthr Cartil. 2021;30(4):516-534.  https://doi.org/10.1016/j.joca.2021.12.003
  96. Miller R, Miller R, Malfait A. Osteoarthritis joint pain: The cytokine connection. Cytokine. 2014;70(2):185-193.  https://doi.org/10.1016/j.cyto.2014.06.019
  97. Bjurstrom M, Blennow K, Zetterberg H, et al. Central nervous system monoaminergic activity in hip osteoarthritis patients with disabling pain: Associations with pain severity and central sensitization. Pain Rep. 2022;7(1):e988. https://doi.org/10.1097/PR9.0000000000000988
  98. Ohashi Y, Fukushima K, Uchida K, et al. Adverse effects of higher preoperative pain at rest, a central sensitization-related symptom, on outcomes after total hip arthroplasty in patients with osteoarthritis. J Pain Res. 2021;14:3345-3352. https://doi.org/10.2147/JPR.S322314
  99. Ohashi Y, Uchida K, Fukushima K, et al. NGF expression and elevation in hip osteoarthritis patients with pain and central sensitization. Biomed Res Int. 2021;2021:9212585. Published 2021 Sep 18.  https://doi.org/10.1155/2021/9212585
  100. Skaper S. Nerve growth factor: A neuroimmune crosstalk mediator for all seasons. Immunol. 2017;151(1):1-15.  https://doi.org/10.1111/imm.12717
  101. McNamee K, Burleigh A, Gompels L, et al. Treatment of murine osteoarthritis with TrkAd5 reveals a pivotal role for nerve growth factor in non-inflammatory joint pain. Pain. 2010;149(2):386-392.  https://doi.org/10.1016/j.pain.2010.03.002
  102. Ohashi Y, Uchida K, Fukushima K, et al. Correlation between CD163 expression and resting pain in patients with hip osteoarthritis: Possible contribution of CD163+monocytes/macrophages to pain pathogenesis. J Orthop Res. 2022 Jun;40(6):1365-1374. https://doi.org/10.1002/jor.25157
  103. Dirmeier M, Capellino S, Schubert T, et al. Lower density of synovial nerve fibres positive for calcitonin gene-related peptide relative to substance P in rheumatoid arthritis but not in osteoarthritis. Rheumatol. 2008;47(1):36-40.  https://doi.org/10.1093/rheumatology/kem301
  104. Iyengar S, Ossipov M, Johnson K. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain. 2017;158(4):543-559.  https://doi.org/10.1097/j.pain.0000000000000831
  105. Levescot A, Chang M, Schnell J, et al. IL-1beta-driven osteoclastogenic Tregs accelerate bone erosion in arthritis. J Clin Investig. 2021;131(18):e141008. https://doi.org/10.1172/JCI141008
  106. Kusakabe T, Sawaji Y, Endo K, et al. DUSP-1 induced by PGE2 and PGE1 attenuates IL-1beta-activated MAPK signaling, leading to suppression of NGF expression in human intervertebral disc cells. Int J Mol Sci. 2021;23(1):371.  https://doi.org/10.3390/ijms23010371
  107. Swanson K, Deng M, Ting J. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477-489.  https://doi.org/10.1038/s41577-019-0165-0
  108. Liu C, Huang Z, Li X, et al. Upregulation of NLRP3 via STAT3-dependent histone acetylation contributes to painful neuropathy induced by bortezomib. Exp Neurol. 2018;302:104-111.  https://doi.org/10.1016/j.expneurol.2018.01.011
  109. Zhao Y, Yang Z. Effect of Wnt signaling pathway on pathogenesis and intervention of neuropathic pain. Exp Ther Med. 2018;16(4):3082-3088. https://doi.org/10.3892/etm.2018.6512
  110. Zhang Y, Zhao D, Li X, et al. The Wnt/beta-catenin pathway regulated cytokines for pathological neuropathic pain in chronic compression of dorsal root ganglion model. Neural Plast. 2021 Apr 19;2021:6680192. https://doi.org/10.1155/2021/6680192
  111. Tang Y, Chen Y, Liu R, et al. Wnt signaling pathways: A role in pain processing. Neuromolecular Med. 2022;24(3):233-249.  https://doi.org/10.1007/s12017-021-08700-z
  112. Reis D, Ruggiero D, Morrison S. The CI area of the rostral ventrolateral medulla oblongata: A critical brainstem region for control of resting and reflex integration of arterial pressure. Am J Hypertens. 1989;2(12 Pt 2):363S-374S.
  113. Malpas S. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 2010;90(2):513-557.  https://doi.org/10.1152/physrev.00007.2009
  114. Rozanski A, Blumenthal J, Kaplan J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation. 1999;99(16):2192-2217. https://doi.org/10.1161/01.cir.99.16.2192
  115. Hjemdahl P, Larsson P, Wallen N. Effects of stress and beta-blockade on platelet function. Circulation. 1991;84(6 Suppl):VI44-VI61.
  116. Craig A. Pain mechanisms: Labeled lines versus convergence in central processing. Ann Rev Neurosci. 2003;26:1-30.  https://doi.org/10.1146/annurev.neuro.26.041002.131022
  117. Bushnell M, Duncan G, Hofbauer R, et al. Pain perception: Is there a role for primary somatosensory cortex? Proc Natl Acad Sci USA. 1999;96(14):7705-7709. https://doi.org/10.1073/pnas.96.14.7705
  118. Coghill R, Sang C, Maisog J, Iadarola M. Pain intensity processing within the human brain: A bilateral, distributed mechanism. J Neurophysiol. 1999;82(4):1934-1943. https://doi.org/10.1152/jn.1999.82.4.1934
  119. Browne T, Hughes D, Dayas C, et al. Projection neuron axon collaterals in the dorsal horn: Placing a new player in spinal cord pain processing. Front Physiol. 2020;11:560802. https://doi.org/10.3389/fphys.2020.560802
  120. Appelhans B, Luecken L. Heart rate variability as an index of regulated emotional responding. Rev Gen Psychol. 2006;10(5):229-232. 
  121. Schwartz P, Vanoli E. Cardiac arrhythmias elicited by interaction between acute myocardial ischemia and sympathetic hyperactivity: A new experimental model for the study of antiarrhythmic drugs. J Cardiovasc Pharmacol. 1981;3(6):1251-1259. https://doi.org/10.1097/00005344-198111000-00012
  122. Baliki M, Chialvo D, Geha P, et al. Chronic pain and the emotional brain: Specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci. 2006;26(47):12165-12173. https://doi.org/10.1523/JNEUROSCI.3576-06.2006
  123. May A. Chronic pain may change the structure of the brain. Pain. 2008;137(1):7-15.  https://doi.org/10.1016/j.pain.2008.02.034
  124. Seminowicz D, Moayedi M. The dorsolateral prefrontal cortex in acute and chronic pain. J Pain. 2017;18(9):1027-1035. https://doi.org/10.1016/j.jpain.2017.03.008
  125. Sesa-Ashton G, Wong R, McCarthy B, et al. Stimulation of the dorsolateral prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure in humans. Cereb Cortex Commun. 2022;3(2):tgac017. https://doi.org/10.1093/texcom/tgac017
  126. Qi X, Cui K, Zhang Y, et al. A nociceptive neuronal ensemble in the dorsomedial prefrontal cortex underlies pain chronicity. Cell Rep. 2022;41(11):111833. https://doi.org/10.1016/j.celrep.2022.111833
  127. Lawrence A, Jarrott B. Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Prog Neurobiol.1996;48(1):21-53.  https://doi.org/10.1016/0301-0082(95)00034-8
  128. Kosinska M, Liebisch G, Lochnit G, et al. A lipidomic study of phospholipid classes and species in human synovial fluid. Arth Rheum. 2013;65(9):2323-2333. https://doi.org/10.1002/art.38053
  129. Alvarez-Garcia O, Rogers N, Smith R, Lotz M. Palmitate has proapoptotic and proinflammatory effects on articular cartilage and synergizes with interleukin-1. Arth Rheum. 2014;66(7):1779-1788. https://doi.org/10.1002/art.38399
  130. Fifth Joint Task Force of the European Society of Cardiology, European Association of Echolcardiography, European Association of Percutaneous Cardiovascular Interventions, et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012): The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur J Prev Cardiol. 2012;19(4):585-667. National Institute for Health and Care Excellence (NICE). https://doi.org/10.1177/2047487312450228
  131. Cardiovascular disease: risk assessment and reduction, including lipid modification, 2016. London: National Institute for Health and Care Excellence (NICE). 18 July 2014; Last updated 10 February 2023. https://www.nice.org.uk/guidance/cg181
  132. Ludwick D, Doucette J. Adopting electronic medical records in primary care: lessons learned from health information systems implementation experience in seven countries. Int J Med Inf. 2009;1:78(1):22-31.  https://doi.org/10.1016/j.ijmedinf.2008.06.005
  133. Herrett E, Gallagher A, Bhaskaran K, et al. Data resource profile: clinical practice research datalink (CPRD). Int J Epidemiol. 2015;1:44(3):827-836.  https://doi.org/10.1093/ije/dyv098
  134. Торшин И.Ю., Лила А.М., Загородний Н.В. и др. Разработка верифицированной шкалы риска остеоартрита на основе кросс-секционного исследования клинико-анамнестических параметров и фармакологического анамнеза пациентов. Современная фармакоэкономика и фармакоэпидемиология. 2023;16(1):7-16.  https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.158
  135. Capewell S, O’Flaherty M. Rapid mortality falls after risk-factor changes in populations. Lancet. 2011;378(9793):752-753.  https://doi.org/10.1016/S0140-6736(10)62302-1
  136. Thompson P, Buchner D, Pina I, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: A statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation. 2003;107(24):3109-3116. https://doi.org/10.1161/01.CIR.0000075572.40158.77
  137. Naci H, Ioannidis J. Comparative effectiveness of exercise and drug interventions on mortality outcomes:Metaepidemiological study. BMJ. 2013;347:f5577. https://doi.org/10.1136/bmj.f5577
  138. Uthman O, van der Windt D, Jordan J, et al. Exercise for lower limb osteoarthritis: Systematic review incorporating trial sequential analysis and network metaanalysis. BMJ. 2013;347:f5555. https://doi.org/10.1136/bmj.f5555
  139. Сарвилина И.В., Минасов Т.Б., Лила А.М. и др. Об эффективности парентеральной формы высокоочищенного хондроитина сульфата в режиме периоперационной подготовки к эндопротезированию коленных суставов. РМЖ. 2022;7:7-16.  https://www.rmj.ru/articles/revmatologiya/Ob_effektivnosti_parenteralynoy_formy_vysokoochischennogo_hondroitina_sulyfata_v_reghime_perioperacionnoy_podgotovki_k_endoprotezirovaniyu_kolennyh_sustavov/?ysclid=lhj01tej27841008410
  140. Schmidt M. Cardiovascular risks associated with nonaspirin non-steroidal anti-inflammatory drug use. Dan Med J. 2015;62:pii:B4987.
  141. Tomaselli G. Prevention of cardiovascular disease and stroke: meeting the challenge. JAMA. 2011;306(19):2147-2148. https://doi.org/10.1001/jama.2011.1668
  142. Vedanthan R, Seligman B, Fuster V. Global perspective on acute coronary syndrome: a burden on the young and poor. Circ Res. 2014;114(12):1959-1975. https://doi.org/10.1161/CIRCRESAHA.114.302782
  143. Teocharis A, Tsolakis I, Tzanakakis G, Karamanos N. Chondroitin sulfate as a key molecule in the development of atherosclerosis and cancer progression. Adv Pharmacol. 2006;53:281-295.  https://doi.org/10.1016/S1054-3589(05)53013-8
  144. Торшин И.Ю., Лила А.М., Наумов А.В. и др. Метаанализ клинических исследований эффективности лечения остеоартрита препаратом Хондрогард. Современная фармакоэкономика и фармакоэпидемиология. 2020;13(4):388-399.  https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.066
  145. Yang W, Sun C, He S, et al. The efficacy and safety of disease-modifying osteoarthritis drugs for knee and hip osteoarthritis-systematic review and network meta-analysis. J Gen Intern Med. 2021;36(7):2085-2093. https://doi.org/10.1007/s11606-021-06755-z
  146. Kolasinski S, Neogi T, Hochberg M, et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res (Hoboken). 2020;72(2):149-162.  https://doi.org/10.1002/acr.24131
  147. Kloppenburg M, Kroon F, Blanco F, et al. 2018 update of the EULAR recommendations for the management of hand osteoarthritis. Ann Rheum Dis. 2019;78(1):16-24.  https://doi.org/10.1136/annrheumdis-2018-213826
  148. Smolen J, Landewe R, Bijlsma J, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020;79(6):685-699.  https://doi.org/10.1136/annrheumdis-2019-216655
  149. Bruyere O, Honvo G, Veronese N, et al. An updated algorithm recommendation for the management of knee osteoarthritis from the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Semin Arthritis Rheum. 2019;49(3):337-350.  https://doi.org/10.1016/j.semarthrit.2019.04.008
  150. Клинические рекомендации Минздрава России «Падения у пациентов пожилого и старческого возраста». 2020. https://cr.rosminzdrav.ru/#!/recomend/1030
  151. Клинические рекомендации Минздрава России «Хроническая боль у пациентов пожилого и старческого возраста». 2020. https://cr.rosminzdrav.ru/#!/recomend/1033
  152. Клинические рекомендации Минздрава России «Гонартроз». 2021. https://cr.minzdrav.gov.ru/recomend/667_1
  153. Клинические рекомендации Минздрава России «Коксартроз». 2021. https://cr.minzdrav.gov.ru/recomend/666_1
  154. Iovu M, Dumais G, du Souich P. Anti-inflammatory activity of chondroitin sulfate. Osteoart Cart. 2008;16 Suppl 3:S14-18.  https://doi.org/10.1016/j.joca.2008.06.008
  155. Du Souich P, Garcia A,Verges J, Montell E. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate. J Cell Mol Med. 2009;3(8A):1451-1463. https://doi.org/10.1111/j.1582-4934.2009.00826.x
  156. de Abajo F, Gil M, Garcia Poza P, et al. Risk of nonfatal acute myocardial infarction associated with non-steroidal antiinflammatory drugs, non-narcotic analgesics and other drugs used in osteoarthritis: a nested case-control study. Pharmacoepidemiol Drug Saf. 2014;23:1128-1138. https://doi.org/10.1002/pds.3617
  157. King D, Xiang J. Glucosamine/Chondroitin and Mortality in a US NHANES Cohort. J Am Board Fam Med. 2020;33(6):842-847.  https://doi.org/10.3122/jabfm.2020.06.200110
  158. Bell G, Kantor E, Lampe J, et al. Use of glucosamine and chondroitin in relation to mortality. Eur J Epidemiol. 2012;27(8):593-603.  https://doi.org/10.1007/s10654-012-9714-6
  159. Morrison L. Reduction of ischemic coronary heart disease by chondroitin sulfate. Angiology. 1971;22(3):165-174.  https://doi.org/10.1177/000331977102200308
  160. Morrison L, Enrick N. Coronary Heart Disease: Reduction of Death Rate By Chondroitin Sulfate. Angiology. 1973;24(5):269-287.  https://doi.org/10.1177/000331977302400503
  161. Nakazawa K, Murata K. Comparative study of the effects of chondroitin sulfate isomers on atherosclerotic subjects. Clinical Trial. Z Alternsforsch. 1979;34(2):153-159. 
  162. Mazzucchelli R, Rodrı´guez-Martı´n S, Garcı´a-Vadillo A, et al. Risk of acute myocardial infarction among new users of chondroitin sulfate: A nested case-control study. PLoS ONE. 2021;16(7):e0253932. https://doi.org/10.1371/journal.pone.0253932
  163. Melgar-Lesmes P, Sánchez-Herrero A, Lozano-Juan F, et al. Chondroitin Sulphate Attenuates Atherosclerosis in ApoE Knockout Mice Involving Cellular Regulation of the Inflammatory Response. Thromb. Haemost. 2018;118(7):1329-1339. https://doi.org/10.1055/s-0038-1657753
  164. Williams K, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995;15(5):551-561.  https://doi.org/10.1161/01.atv.15.5.551
  165. Adhikara I, Yagi K, Mayasari D, et al. Chondroitin Sulfate Nacetylgalactosaminyltransferase-2 Impacts Foam Cell Formation and Atherosclerosis by Altering Macrophage Glycosaminoglycan Chain. Arterioscler Thromb Vasc Biol. 2021 Mar;41(3):1076-1091. https://doi.org/10.1161/ATVBAHA.120.315789
  166. Bell J, Rhind S, Di Battista A, et al. Biomarkers of glycocalyx injury are associated with delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage: a case series supporting a new hypothesis. Neurocrit Care. 2016;26(3):339-347.  https://doi.org/10.1007/s12028-016-0357-4
  167. Nuytemansa K, Ortelb T, Gomeza L, et al. Variants in chondroitin sulfate metabolism genes in thrombotic storm. Thromb Res. 2018;161:43-51.  https://doi.org/10.1016/j.thromres.2017.11.016
  168. Ye J, Esmon C, Johnson A. The chondroitin sulfate moiety of thrombomodulin binds a second molecule of thrombin. J Biol Chem. 1993;268(4):2373-2379.
  169. McGee M, Wagner W. Chondroitin Sulfate Anticoagulant Activity Is Linked to Water Transfer Relevance to Proteoglycan Structure in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2003;23(10):1921-1927. https://doi.org/10.1161/01.ATV.0000090673.96120.67
  170. Moroudas A, Weinberg P, Parker K, Winlove C. The distribution and diffusion of small ions in chondroitin sulfate, hyaluronate and some proteoglycans solutions. Biophys Chem. 1988;32(2-3):257-270.  https://doi.org/10.1016/0301-4622(88)87012-1

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.