The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Suchkov S.V.

University of World Politics and Law;
Russian University of Medicine;
New York Academy of Sciences

Charchyan E.R.

Petrovsky National Research Centre of Surgery

Polyakova V.N.

University of World Politics and Law

Zemskov V.M.

Vishnevsky National Medical Research Center of Surgery;
Russian Academy of Natural Sciences

Belov Yu.V.

Petrovsky National Research Center of Surgery;
Sechenov First Moscow State Medical University

On the path to personalized cardiology: prospects of precise assessment of cardiovascular risks and predictive-prognostic diagnostics

Authors:

Suchkov S.V., Charchyan E.R., Polyakova V.N., Zemskov V.M., Belov Yu.V.

More about the authors

Read: 743 times


To cite this article:

Suchkov SV, Charchyan ER, Polyakova VN, Zemskov VM, Belov YuV. On the path to personalized cardiology: prospects of precise assessment of cardiovascular risks and predictive-prognostic diagnostics. Russian Journal of Cardiology and Cardiovascular Surgery. 2025;18(2):206‑215. (In Russ.)
https://doi.org/10.17116/kardio202518021206

Recommended articles:
Arti­ficial inte­lligence in ultrasound diagnosis of thyroid nodu­les. Piro­gov Russian Journal of Surgery. 2024;(12-2):109-116
Comparison of models for prediction of spontaneous preterm birth. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):10-19
Is arti­ficial inte­lligence nece­ssary for healthcare system?. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):40-48
The role of immuno-inflammatory factors in the deve­lopment of nega­tive symptoms in schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):42-48
Challenges, problems and approaches to healthcare digi­tal technologies enha­ncement. Russian Journal of Preventive Medi­cine. 2024;(12):31-36
Inflammatory aging. Part 1. The principal biochemical mechanisms. Russian Journal of Preventive Medi­cine. 2024;(12):145-150

References:

  1. Leopold, JA.; Loscalzo, J. Emerging Role of Precision Medicine in Cardiovascular Disease. Circ. Res. 2018;122:1302-1315. https://doi.org/10.1161/circresaha.117.310782
  2. Antman, EM.; Loscalzo, J. Precision Medicine in Cardiology. Nat. Rev. Cardiol. 2016;13:591-602.  https://doi.org/10.1038/nrcardio.2016.101
  3. Currie G, Delles C. Precision Medicine and Personalized Medicine in Cardiovascular Disease. Adv. Exp. Med. Biol. 2018;1065:589-605.  https://doi.org/10.1007/978-3-319-77932-4_36
  4. Sohag MMH, Raqib SM, Akhmad SA. OMICS approaches in cardiovascular diseases: a mini review. Genomics Inform. 2021;19(2):e13.  https://doi.org/10.5808/gi.21002
  5. Magni P. The sex-associated burden of atherosclerotic cardiovascular diseases: an update on prevention strategies. Mech. Ageing Dev. 2023; https://doi.org/10.1016/j.mad.2023.111805
  6. Xia Y, et al. DNA methylation signatures of incident coronary heart disease: findings from epigenome-wide association studies. Clin. Epigenetics. 2021;13:1-16  https://doi.org/10.1186/s13148-021-01175-6
  7. Valdes-Marquez E, et al. Proteomic profiling identifies novel independent relationships between inflammatory proteins and myocardial infarction. Eur. J. Prev. Cardiol. 2023;30:583-591.  https://doi.org/10.1093/eurjpc/zwad020
  8. Li Q, et al. Single-cell RNA sequencing in atherosclerosis: mechanism and precision medicine. Front. Pharmacol. 2022;13977490. https://doi.org/10.3389/fphar.2022.977490
  9. Zhou Y, et al. LncRNA landscape of coronary atherosclerosis reveals differentially expressed LncRNAs in proliferation and migration of coronary artery smooth muscle cells. Front. Cell Dev. Biol. 2021;9656636. https://doi.org/10.3389/fcell.2021.656636
  10. Li H, Zhu H. and Ge J. Long noncoding RNA: recent updates in atherosclerosis. Int. J. Biol. Sci. 2016;12:898-910.  https://doi.org/10.7150/ijbs.14430
  11. Sánchez-Cabo F, et al. Subclinical atherosclerosis and accelerated epigenetic age mediated by inflammation: a multi-omics study. Eur. Heart J. 2023;44:2698-2709. https://doi.org/10.1093/eurheartj/ehad361
  12. Joshi A, et al. Systems biology in cardiovascular disease: a multiomics approach. Nat. Rev. Cardiol. 2021;18:313-330.  https://doi.org/10.1038/s41569-020-00477-1
  13. Holmes MV, et al. Lipids, lipoproteins, and metabolites and risk of myocardial infarction and stroke. J. Am. Coll. Cardiol. 2018;71:620-632.  https://doi.org/10.1016/j.jacc.2017.12.006
  14. Liu L, Liu Y, Liu C, et al. Analysis of gene expression profile identifies potential biomarkers for atherosclerosis. Mol. Med. Rep. 2016;14:3052-3058, https://doi.org/10.3892/mmr.2016.5650
  15. Nurmohamed NS, et al. Proteomics and lipidomics in atherosclerotic cardiovascular disease risk prediction. Eur. Heart J. 2023;44:1594-1607. https://doi.org/10.1093/eurheartj/ehad161
  16. Benincasa G, et al. Bioinformatic platforms for clinical stratification of natural history of atherosclerotic cardiovascular diseases. Eur. Heart J. Cardiovasc. Pharmacother. 2023; (Published online August 10,2023.). https://doi.org/10.1093/ehjcvp/pvad059
  17. Shrivastava, A.; Marzolla, V.; Weidmann, H.; Caprio, M.; Tregouet, D.-A.; Zeller, T.; Karakas, M. Design and Rationale of the ERA-CVD Consortium PREMED-CAD—Precision Medicine in Coronary Artery Disease. Biomolecules. 2020;10:125.  https://doi.org/10.3390/biom10010125
  18. Crea F, Vergallo R. Plaque Erosion: Towards Precision Medicine in Acute Coronary Syndromes. Int. J. Cardiol. 2019;288:22-24.  https://doi.org/10.1016/j.ijcard.2019.04.058
  19. Drapkina OM, Limonova AS, Garbuzova EV, et al. Personalized prevention: possibilities and limitations of polygenic risk assessment. Russian Journal of Personalized Medicine. 2023;3(5):14-21. (In Russ.). https://doi.org/10.18705/2782-3806-2023-3-5-14-21
  20. Medvedeva EA, Surkova EA, Limareva LV, Shchukin YuV. Molecular biomarkers for diagnostics, risk stratification and prediction of chronic heart failure. Russian Journal of Cardiology. 2016;(8):86-91. (In Russ.). https://doi.org/10.15829/1560-4071-2016-8-86-91.
  21. Shlyakhto EV, Konradi AO. Personalized Medicine. History, current state and future directions. Russian Journal for Personalized Medicine. 2021;1(1):6-20. (In Russ.).
  22. Akhoon N. Precision medicine: a new paradigm in therapeutics. International Journal of Preventive Medicine. 2021;12.  https://doi.org/10.4103/ijpvm.IJPVM_375_19
  23. Babu M, Snyder M. Multi-Omics Profiling for Health. Mol Cell Proteomics. 2023;22(6):100561. https://doi.org/10.1016/j.mcpro.2023.100561
  24. Chen IY, Wu JC. Cardiovascular molecular imaging: focus on clinical translation. Circulation. 2011;123(4):425-443.  https://doi.org/10.1161/circulationaha.109.916338
  25. Curley D, Lavin Plaza B, Shah AM, Botnar RM. Molecular imaging of cardiac remodelling after myocardial infarction. Basic Res Cardiol. 2018;113(2):10.  https://doi.org/10.1007/s00395-018-0668-z
  26. Farouc A. Jaffer, Peter Libby and Ralph Weissleder. Molecular Imaging of Cardiovascular Disease. Circulation. 2007;116:1052-1061. https://doi.org/10.1161/CIRCULATIONAHA.106.647164
  27. Varasteh Z, Weber WA, Rischpler C. Nuclear Molecular Imaging of Cardiac Remodeling after Myocardial Infarction. Pharmaceuticals. 2022;15:183.  https://doi.org/10.3390/ph15020183
  28. Wollenweber T, Bengel FM. Cardiac Molecular Imaging. Seminars in Nuclear Medicine. 2014;44 (5):386-397.  https://doi.org/10.1053/j.semnuclmed.2014.05.002
  29. Ylä-Herttuala E, Saraste A, Knuuti J, et al. Molecular Imaging to Monitor Left Ventricular Remodeling in Heart Failure. Curr Cardiovasc Imaging Rep. 2019;12:11.  https://doi.org/10.1007/s12410-019-9487-3
  30. Leon-Mimila P, Wang J and Huertas-Vazquez A Relevance of Multi-Omics Studies in Cardiovascular Diseases. Front. Cardiovasc. Med. 2019;6:91.  https://doi.org/10.3389/fcvm.2019.00091
  31. Doran S, Arif M, Lam S, Bayraktar A, Turkez H, Uhlen M, Boren J, Mardinoglu A. Multi-omics approaches for revealing the complexity of cardiovascular disease. Brief Bioinform. 2021;22(5). https://doi.org/10.1093/bib/bbab061
  32. Sohag MMH, Raqib SM, Akhmad SA. OMICS approaches in cardiovascular diseases: a mini review. Genomics Inform. 2021;19(2):e13.  https://doi.org/10.5808/gi.21002
  33. Yayun Gu, Yan Zhou, Sihan Ju et al. Multi-omics profiling visualizes dynamics of cardiac development and functions. Cell Reports. 2022;41(13). https://doi.org/10.1016/j.celrep.2022.111891
  34. Zhu K, Liu D, Lai H, Li J, Wang C. Developing miRNA therapeutics for cardiac repair in ischemic heart disease. J Thorac Dis. 2016;8(9). https://doi.org/10.21037/jtd.2016.08.93
  35. Grigoriev EV, Ponasenko AV, Tsepokina AV, Ivkin AA, Korneyuk RA. The level of microRNA expression in cardiac surgery patients depends on the presence of multiple organ failure in postoperative period. Almanac of Clinical Medicine. 2022;50 (4):217-225. (In Russ.). https://doi.org/10.18786/2072-0505-2022-50-036
  36. Serban C. Stoica, Dan M. Dorobantu, Antonella Vardeu, Gianni D. Angelini, Massimo Caputo, Costanza Emanueli. MicroRNAs as potential biomarkers in congenital heart surgery. The Journal of Thoracic and Cardiovascular Surgery. 2020;159 (4):1532-1540.e7.  https://doi.org/10.1016/j.jtcvs.2019.03.062
  37. Zhou SS, Jin JP, Wang JQ, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39:1073-1084. https://doi.org/10.1038/aps.2018.30
  38. Vavassori C, Cipriani E, Colombo G. Circulating MicroRNAs as Novel Biomarkers in Risk Assessment and Prognosis of Coronary Artery Disease. European Cardiology Review. 2022;17:e06.  https://doi.org/10.15420/ecr.2021.47
  39. Thum T, Galuppo P, Wolf C, et al. MicroRNAs in the Human Heart A Clue to Fetal Gene Reprogramming in Heart Failure. Circulation. 2007;116:258-267.  https://doi.org/10.1161/CIRCULATIONAHA.107.687947
  40. Sopic M, Vilne B, Gerdts E, et al. Multiomics tools for improved atherosclerotic cardiovascular disease management. Trends in Molecular Medicine. 2023;29 (12):983-995.  https://doi.org/10.1016/j.molmed.2023.09.004
  41. Usova EI, Alieva AS, Yakovlev AN, Alieva MS, Prokhorikhin AA, Konradi AO, Shlyakhto EV, Magni P, Catapano AL, Baragetti A. Integrative Analysis of Multi-Omics and Genetic Approaches-A New Level in Atherosclerotic Cardiovascular Risk Prediction. Biomolecules. 2021;11(11):1597. https://doi.org/10.3390/biom11111597
  42. Rui-Sheng Wang, Bradley A. Maron and Joseph Loscalzo. Multiomics Network Medicine Approaches to Precision Medicine and Therapeutics in Cardiovascular Diseases. Arteriosclerosis. Thrombosis, and Vascular Biology. 2023;43:493-503.  https://doi.org/10.1161/atvbaha.122.318731
  43. Dufour CR, Xia H, B’chir W, et al. Integrated multi-omics analysis of adverse cardiac remodeling and metabolic inflexibility upon ErbB2 and ERRα deficiency. Commun Biol. 2022;5:955.  https://doi.org/10.1038/s42003-022-03942-4
  44. Usman A. Tahir and Robert E. Gerszten. Omics and Cardiometabolic Disease Risk Prediction. Annual Review of Medicine. 2020;71:163-175.  https://doi.org/10.1146/annurev-med-042418-010924
  45. Mox Ingbo, Zhang Yonghong. Identification of risk factors for cardiovascular diseases based on multi-omics studies. Chinese journal of disease control & prevention. 2018;22(9):873-879. 
  46. Ferrannini E, Manca ML, Ferrannini G, et al. Differential Proteomics of Cardiovascular Risk and Coronary Artery Disease in Humans. Frontiers in Cardiovasc. Med. 2022;8:1-11.  https://doi.org/10.3389/fcvm.2021.790289
  47. Nurmohamed NS, Belo Pereira JP, Hoogeveen RM et al. Targeted proteomics improves cardiovascular risk prediction in secondary prevention. Eur Heart J. 2022;43(16):1569-1577. https://doi.org/10.1093/eurheartj/ehac055
  48. Nurmohamed NS, Pereira J, et al. Targeted proteomics improves cardiovascular risk prediction in secondary prevention. European Heart Journal. 2022;43 (16):1569-1577. https://doi.org/10.1093/eurheartj/ehac055
  49. Helgason H et al. Evaluation of large-scale proteomics for prediction of cardiovascular events. JAMA. 2023;330:725. 
  50. Nataliea A, Wolfgangc K. Is proteomics of value in cardiovascular risk assessment?. Current Opinion in Lipidology. 2019;30(6):452-461.  https://doi.org/10.1001/jama.2023.13258
  51. Vivancoa F, López-Bescósb L, Tuñónc J, Egidod J. Proteomics and Cardiovascular Disease. 2003;56(3):289-302. 
  52. Corlin L, Liu C, Lin H, et al. Proteomic Signatures of Lifestyle Risk Factors for Cardiovascular Disease: A Cross‐Sectional Analysis of the Plasma Proteome in the Framingham Heart Study. Journal of the American Heart Association. 2021;10:e018020. https://doi.org/10.1161/circ.139.suppl_1.001
  53. Pedrotty DM, Morley MP, Cappola TP. Transcriptomic biomarkers of cardiovascular disease. Prog Cardiovasc Dis. 2012;55(1):64-69  https://doi.org/10.1016/j.pcad.2012.06.003
  54. Miranda AM.A, Janbandhu V, Maatz H, et al. Single-cell transcriptomics for the assessment of cardiac disease. Nat Rev Cardiol. 2023;20:289-308.  https://doi.org/10.1038/s41569-022-00805-7
  55. Arderiu G, Lambert C, Ballesta C, Moscatiello F, Vilahur G, Badimon L. Cardiovascular Risk Factors and Differential Transcriptomic Profile of the Subcutaneous and Visceral Adipose Tissue and Their Resident Stem Cells. Cells. 2020;9(10):2235. https://doi.org/10.3390/cells9102235
  56. Robinson EL, Baker AH, Brittan M, et al. Dissecting the transcriptome in cardiovascular disease. Cardiovascular Research. 2022;118 (4):1004-1019. https://doi.org/10.1093/cvr/cvab117
  57. Songjie Han, Qianqian Xu, Yawen Du, Chuwei Tang, Herong Cui, Xiaofeng Xia, Rui Zheng, Yang Sun, Hongcai Shang. Single-cell spatial transcriptomics in cardiovascular development, disease, and medicine. Genes & Diseases. 2023;101163. https://doi.org/10.1016/j.gendis.2023.101163
  58. Shi GP, Sukhova GK, Grubb A, Ducharme A, Rhode LH, Lee RT, Ridker PM, Libby P, Chapman HA. Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J Clin Invest. 1999;104(9):1191-1197. https://doi.org/10.1172/JCI7709
  59. Anders Wanhainen, Kevin Mani and Jonathan Golledge. Surrogate Markers of Abdominal Aortic Aneurysm Progression. Arteriosclerosis, Thrombosis, and Vascular Biology. 2016;36:236-244.  https://doi.org/10.1161/atvbaha.115.306538
  60. Pramana KA.AP, Pintaningrum Y, Rahmat, B. The effects of statin therapy on aneurysm size, growth rate, and matrix metalloproteinases-9 levels in patients with aortic aneurysm: a systematic review and meta-analysis. Egypt Heart J. 2023;75:88.  https://doi.org/10.1186/s43044-023-00407-9
  61. Hong Lu and Masanori Aikawa. Many Faces of Matrix Metalloproteinases in Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015;35:752-754.  https://doi.org/10.1161/atvbaha.115.305401
  62. Scott A. LeMaire, Xinwen Wang, Jonathan A. Wilks et al. Matrix metalloproteinases in ascending aortic aneurysms: Bicuspid versus trileaflet aortic valves. Journal of Surgical Research. 2005;123 (1):40-48.  https://doi.org/10.1016/j.jss.2004.06.007
  63. Li T, Jiang B, Li X, et al. Serum matrix metalloproteinase-9 is a valuable biomarker for identification of abdominal and thoracic aortic aneurysm: a case-control study. BMC Cardiovasc Disord. 2018;18:202.  https://doi.org/10.1186/s12872-018-0931-0
  64. Keeling WB, Armstrong PA, Stone PA, Bandyk DF, Shames ML. An Overview of Matrix Metalloproteinases in the Pathogenesis and Treatment of Abdominal Aortic Aneurysms. Vascular and Endovascular Surgery. 2005;39(6):457-464.  https://doi.org/10.1177/153857440503900601
  65. G. Matthew Longo, Wanfen Xiong, Timothy C. Greiner, Yong Zhao, Nicola Fiotti, and B. Timothy Baxter. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest. 2002;110(5):625-632.  https://doi.org/10.1172/JCI15334
  66. Corey S. Moran, Moira McCann, Mirko Karan, Paul Norman, Natkunam Ketheesan and Jonathan Golledge. Association of Osteoprotegerin With Human Abdominal Aortic Aneurysm Progression. Circulation. 2005;111:3119-3125. https://doi.org/10.1161/circulationaha.104.464727
  67. Migacz M, Janoska-Gawrońska A, Holecki M, Chudek J. The role of osteoprotegerin in the development, progression and management of abdominal aortic aneurysms. Open Med (Wars). 2020;15(1):457-446.  https://doi.org/10.1515/med-2020-0046
  68. Koole D, Hurks R, Schoneveld A, et al. Osteoprotegerin Is Associated With Aneurysm Diameter and Proteolysis in Abdominal Aortic Aneurysm Disease. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32:1497-1504. https://doi.org/10.1161/atvbaha.111.243592
  69. Moran CS, McCann M, Karan M, Norman P, Ketheesan N, Golledge J. Association of osteoprotegerin with human abdominal aortic aneurysm progression. Circulation. 2005;111(23):3119-3125. https://doi.org/10.1161/CIRCULATIONAHA.104.464727
  70. Lu J, Li P, Ma K, et al. OPG/TRAIL ratio as a predictive biomarker of mortality in patients with type A acute aortic dissection. Nat Commun. 2021;12:3401. https://doi.org/10.1038/s41467-021-23787-5
  71. Vladislav Treska, Ondrej Topolcan, Jindra Vrzalova, Jiri Molacek, Karel Houdek. Osteoprotegerin Serum Levels in Abdominal Aortic Aneurysm. J Vascular Surgery. 2011;53 (2):554. 
  72. Filis K, Martinakis V, Galyfos G, et al. Osteopontin and Osteoprotegerin as Potential Biomarkers in Abdominal Aortic Aneurysm before and after Treatment. International Scholarly Research Notices. 2014;461239. https://doi.org/10.1016/j.jvs.2010.11.071
  73. Kadoglou N, Papadakis I, Moulakakis K, et al. Arterial stiffness and novel biomarkers in patients with abdominal aortic aneurysms. Regulatory Peptides. 2012;179 (1-3):50-54.  https://doi.org/10.1016/j.regpep.2012.08.014
  74. Stepien KL, Bajdak-Rusinek K, Fus-Kujawa A, et al. Role of Extracellular Matrix and Inflammation in Abdominal Aortic Aneurysm. Int. J. Mol. Sci. 2022;23:11078. https://doi.org/10.3390/ijms231911078

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.