The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Latsh N.Yu.

Pirogov National Research Medical University

Yunyaev A.R.

Pirogov Russian National Research Medical University

Evsyukova E.D.

Pirogov Russian National Research Medical University

The alleged mechanisms of olfactory disorders in the new coronavirus infection

Authors:

Latsh N.Yu., Yunyaev A.R., Evsyukova E.D.

More about the authors

Read: 2364 times


To cite this article:

Latsh NYu, Yunyaev AR, Evsyukova ED. The alleged mechanisms of olfactory disorders in the new coronavirus infection. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(2):7‑11. (In Russ.)
https://doi.org/10.17116/jnevro20231230217

Recommended articles:
Therapeutic pote­ntial of quercetin and its deri­vatives against COVID-19. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(5):44-50

References:

  1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet. 2020 Jan 30]. Lancet. 2020;395(10223):497-506.  https://doi.org/10.1016/S0140-6736(20)30183-5
  2. He X, Cheng X, Feng X, et al. Clinical Symptom Differences Between Mild and Severe COVID-19 Patients in China: A Meta-Analysis. Frontiers in Public Health. 2021;8:561264. https://doi.org/10.3389/fpubh.2020.561264
  3. Heidari F, Karimi E, Firouzifar M, et al. Anosmia as a prominent symptom of COVID-19 infection. Rhinology. 2020;58(3):302-303.  https://doi.org/10.4193/rhin20.140
  4. Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and Ageusia: Common Findings in COVID-19 Patients. Laryngoscope. 2020;130(7):1787. https://doi.org/10.1002/lary.28692
  5. Bailie CR, Franklin L, Nicholson S, et al. Symptoms and laboratory manifestations of mild COVID-19 in a repatriated cruise ship cohort. Epidemiology and Infection. 2021;149:e44.  https://doi.org/10.1017/s0950268821000315
  6. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-574.  https://doi.org/10.1016/S0140-6736(20)30251-8
  7. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65(1):175-187.  https://doi.org/10.1016/0092-8674(91)90418-x
  8. Binder DK. Cherepnye nervy: anatomiya, patologiya, vizualizatsiya. In book: Devin K., Binder D., Zonne K., Fishbayn N.D.; per s angl.; pod red. prof. Kamchatnova P.R. M.: MEDpress-inform; 2014;296. (In Russ.).
  9. Patel RM, Pinto JM. Olfaction: anatomy, physiology, and disease. Clin Anat. 2014;27(1):54-60.  https://doi.org/10.1002/ca.22338
  10. International Statistical Classification of Diseases and Related Health Problems (ICD-10), version 2019. https://icd.who.int/browse10/2019/en#/R40-R46
  11. International Statistical Classification of Diseases and Related Health Problems (ICD-11), version:02/2022. https://icd.who.int/browse11/l-m/en
  12. Scoppettuolo P, Borrelli S, Naeije G. Neurological involvement in SARS-CoV-2 infection: A clinical systematic review. Brain Behav Immun Health. 2020;5:100094. https://doi.org/10.1016/j.bbih.2020.100094
  13. Siow I, Lee KS, Zhang JJY, et al. Stroke as a Neurological Complication of COVID-19: A Systematic Review and Meta-Analysis of Incidence, Outcomes and Predictors. J Stroke Cerebrovasc Dis. 2021;30(3):105549. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105549
  14. Benameur K, Agarwal A, Auld SC, et al. Encephalopathy and Encephalitis Associated with Cerebrospinal Fluid Cytokine Alterations and Coronavirus Disease, Atlanta, Georgia, USA, 2020. Emerg Infect Dis. 2020;26(9):2016-2021. https://doi.org/10.3201/eid2609.202122
  15. Sedaghat Z, Karimi N. Guillain Barre syndrome associated with COVID-19 infection: A case report. J Clin Neurosci. 2020;76:233-235.  https://doi.org/10.1016/j.jocn.2020.04.062
  16. Chakraborty U, Chandra A, Ray AK, Biswas P. COVID-19-associated acute transverse myelitis: a rare entity. BMJ Case Rep. 2020;13(8):e238668. https://doi.org/10.1136/bcr-2020-238668
  17. Organisation WH. The ICD-10 Classification of Mental and Behavioural Disorders Clinical: Descriptions and Diagnostic Guidelines = CIM-10 — Classification des troubles mentaux et du comportement: Descriptions cliniques et directives diagnostiques. Weekly Epidemiological Record=Relevé épidémiologi quehebdomadaire. 2019;67(‎30):227.  https://apps.who.int/iris/handle/10665/228431
  18. Siow I, Lee KS, Zhang JJY, et al. Encephalitis as a neurological complication of COVID-19: A systematic review and meta-analysis of incidence, outcomes, and predictors. Eur J Neurol. 2021;28(10):3491-3502. https://doi.org/10.1111/ene.14913
  19. Baud D, Qi X, Nielsen-Saines K, et al. Real estimates of mortality following COVID-19 infection. Lancet Infect Dis. 2020;20(7):773.  https://doi.org/10.1016/S1473-3099(20)30195-X
  20. Guilmot A, Maldonado Slootjes S, Sellimi A, et al. Immune-mediated neurological syndromes in SARS-CoV-2-infected patients. J Neurol. 2021;268(3):751-757.  https://doi.org/10.1007/s00415-020-10108-x
  21. Cao A, Rohaut B, Le Guennec L, et al. Severe COVID-19-related encephalitis can respond to immunotherapy. Brain. 2020;143(12):e102. https://doi.org/10.1093/brain/awaa337
  22. Koh JS, De Silva DA, Quek AML, et al. Neurology of COVID-19 in Singapore [published correction appears in J Neurol Sci. 2021 May 15;424:117406]. J Neurol Sci. 2020;418:117118. https://doi.org/10.1016/j.jns.2020.117118
  23. Zubair AS, McAlpine LS, Gardin T, et al. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease. JAMA Neurol. 2020;77(8):1018-1027. https://doi.org/10.1001/jamaneurol.2020.2065
  24. Mondal R, Ganguly U, Deb S, et al. Meningoencephalitis associated with COVID-19: a systematic review. J Neurovirol. 2021;27(1):12-25.  https://doi.org/10.1007/s13365-020-00923-3
  25. Morano A, Cerulli Irelli E, Fanella M, et al. Olfactory impairment in autoimmune encephalitis: another piece of the puzzle. J Neurol. 2022;269:2762-2768. https://doi.org/10.1007/s00415-022-10959-6
  26. Gray H. Anatomy of the human body. London, England: Bounty; 2012.
  27. Tang T, Bidon M, Jaimes JA, et al. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res. 2020;178:104792. https://doi.org/10.1016/j.antiviral.2020.104792
  28. Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681-687.  https://doi.org/10.1038/s41591-020-0868-6
  29. Lukassen S, Chua RL, Trefzer T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;39(10):e105114. https://doi.org/10.15252/embj.20105114
  30. Chen M, Shen W, Rowan NR, et al. Elevated ACE2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Preprint. bioRxiv. 2020;2020.05.08.084996. https://doi.org/10.1101/2020.05.08.084996
  31. Eliezer M, Hamel AL, Houdart E, et al. Loss of smell in patients with COVID-19: MRI data reveal a transient edema of the olfactory clefts. Neurology. 2020;95(23):3145-3152. https://doi.org/10.1212/wnl.0000000000010806
  32. Urata S, Maruyama J, Kishimoto-Urata M, et al. Regeneration Profiles of Olfactory Epithelium after SARS-CoV-2 Infection in Golden Syrian Hamsters. ACS Chem Neurosci. 2021;12(4):589-595.  https://doi.org/10.1021/acschemneuro.0c00649
  33. Najafloo R, Majidi J, Asghari A, et al. Mechanism of Anosmia Caused by Symptoms of COVID-19 and Emerging Treatments. ACS Chem Neurosci. 2021;12(20):3795-3805. https://doi.org/10.1021/acschemneuro.1c00477
  34. Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020;6(31):eabc5801. https://doi.org/10.1126/sciadv.abc5801
  35. Butowt R, Bilinska K. SARS-CoV-2: Olfaction, Brain Infection, and the Urgent Need for Clinical Samples Allowing Earlier Virus Detection. ACS Chem Neurosci. 2020;11(9):1200-1203. https://doi.org/10.1021/acschemneuro.0c00172
  36. Henkin RI, Schmidt L, Velicu I. Interleukin 6 in hyposmia. JAMA Otolaryngol Head Neck Surg. 2013;139(7):728-734.  https://doi.org/10.1001/jamaoto.2013.3392
  37. Cazzolla AP, Lovero R, Lo Muzio L, et al. Taste and Smell Disorders in COVID-19 Patients: Role of Interleukin-6. ACS Chem Neurosci. 2020;11(17):2774-2781. https://doi.org/10.1021/acschemneuro.0c00447
  38. Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264-7275. https://doi.org/10.1128/jvi.00737-08
  39. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11(7):995-998.  https://doi.org/10.1021/acschemneuro.0c00122
  40. Imam SA, Lao WP, Reddy P, et al. Is SARS-CoV-2 (COVID-19) postviral olfactory dysfunction (PVOD) different from other PVOD?. World J Otorhinolaryngol Head Neck Surg. 2020;6(suppl 1):26-32.  https://doi.org/10.1016/j.wjorl.2020.05.004
  41. Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. Preprint. bioRxiv. 2020;2020.06.25.169946. https://doi.org/10.1101/2020.06.25.169946
  42. Glezer I, Malnic B. Olfactory receptor function. Handb Clin Neurol. 2019;164:67-78.  https://doi.org/10.1016/b978-0-444-63855-7.00005-8
  43. Sharma A, Kumar R, Aier I, et al. Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research. Curr Neuropharmacol. 2019;17(9):891-911.  https://doi.org/10.2174/1570159X17666181206095626
  44. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3-20.  https://doi.org/10.1038/s41580-021-00418-x
  45. Dourmashkin RR, Tyrrell DA. Attachment of two myxoviruses to ciliated epithelial cells. J Gen Virol. 1970;9(1):77-88.  https://doi.org/10.1099/0022-1317-9-1-77
  46. Li W, Li M, Ou G. COVID-19, cilia, and smell. FEBS J. 2020;287(17):3672-3676. https://doi.org/10.1111/febs.15491
  47. Briguglio M, Bona A, Porta M, et al. Disentangling the Hypothesis of Host Dysosmia and SARS-CoV-2: The Bait Symptom That Hides Neglected Neurophysiological Routes. Front Physiol. 2020;11:671.  https://doi.org/10.3389/fphys.2020.00671
  48. Mori I, Goshima F, Imai Y, et al. Olfactory receptor neurons prevent dissemination of neurovirulent influenza A virus into the brain by undergoing virus-induced apoptosis. J Gen Virol. 2002;83(Pt 9):2109-2116. https://doi.org/10.1099/0022-1317-83-9-2109
  49. Lochhead JJ, Thorne RG. Intranasal de-livery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614-628.  https://doi.org/10.1016/j.addr.2011.11.002

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.