Катасонов А.Б.

ФГБНУ «Научный центр психического здоровья»

Терапевтический потенциал кверцетина и его производных против COVID-19

Авторы:

Катасонов А.Б.

Подробнее об авторах

Прочитано: 856 раз


Как цитировать:

Катасонов А.Б. Терапевтический потенциал кверцетина и его производных против COVID-19. Журнал неврологии и психиатрии им. С.С. Корсакова. 2025;125(5):44‑50.
Katasonov AB. Therapeutic potential of quercetin and its derivatives against COVID-19. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(5):44‑50. (In Russ.)
https://doi.org/10.17116/jnevro202512505144

Рекомендуем статьи по данной теме:

Литература / References:

  1. Kupferschmidt K, Cohen J. Race to find COVID-19 treatments accelerates. 2020;1412-1413. https://doi.org/10.1126/science.367.6485.1412
  2. Liu D, Zeng X, Ding Z, et al. Adverse cardiovascular effects of anti-COVID-19 drugs. Frontiers in Pharmacology. 2021;12:C699949. https://doi.org/10.3389/fphar.2021.699949
  3. Azeem M, Hanif M, Mahmood K, et al. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polymer Bulletin. 2023;80(1):241-262.  https://doi.org/10.1007/s00289-022-04091-8
  4. Di Petrillo A, Orrù G, Fais A, et al. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytotherapy Research, 2022;36(1):266-278.  https://doi.org/10.1002/ptr.7309
  5. Chatterjee S, Nalla L V, Sharma M, et al. Association of COVID-19 with comorbidities: an update. ACS Pharmacology & Translational Science. 2023;6(3):334-354.  https://doi.org/10.1021/acsptsci.2c00181
  6. Chiang M C, Tsai T Y, Wang C J. The Potential Benefits of Quercetin for Brain Health: A Review of Anti-Inflammatory and Neuroprotective Mechanisms. International Journal of Molecular Sciences. 2023;24(7):6328. https://doi.org/10.3390/ijms24076328
  7. Tyagi K, Rai P, Gautam A, et al. Neurological manifestations of SARS-CoV-2: Complexity, mechanism and associated disorders. European Journal of Medical Research. 2023;28(1):307.  https://doi.org/10.1186/s40001-023-01293-2
  8. Samad N, Saleem A, Yasmin F, et al. Quercetin protects against stress-induced anxiety-and depression-like behavior and improves memory in male mice. Physiological Research. 2018 Nov 14;67(5):795-808.  https://doi.org/10.33549/physiolres.933776
  9. Mehta V, Parashar A, Udayabanu M. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress. Physiology & behavior. 2017;171:69-78.  https://doi.org/10.1016/j.physbeh.2017.01.006
  10. Silvestro S, Bramanti P, Mazzon E. Role of quercetin in depressive-like behaviors: Findings from animal models. Applied Sciences. 2021;11.15:7116. https://doi.org/10.3390/app11157116
  11. Paulke A, Eckert G P, Schubert-Zsilavecz M. Isoquercitrin provides better bioavailability than quercetin: comparison of quercetin metabolites in body tissue and brain sections after six days administration of isoquercitrin and quercetin. Pharmazie. 2012;67:991-996.  https://doi.org/10.1691/ph.2012.2050
  12. Ishisaka A, Ichikawa S, Sakakibara H, et al. Ac cumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radical Biology and Medicine. 2011;51(7):1329-1336. https://doi.org/10.1016/j.freeradbiomed.2011.06.017
  13. Almeida AF, Borge GI A, Piskula M, et al. Bioavailability of quercetin in humans with a focus on interindividual variation. Comprehensive Reviews in Food Science and Food Safety. 2018;17(3):714-731.  https://doi.org/10.1111/1541-4337.12342
  14. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 2020;181(2):271-280.e8.  https://doi.org/10.1016/j.cell.2020.02.052
  15. Mayi BS, Leibowitz JA, Woods A, et al. The role of Neuropilin-1 in COVID-19. PLoS Pathogens. 2021;17(1):e1009153. https://doi.org/10.1371/journal.ppat.1009153
  16. Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem cell reviews and reports. 2020;16(3):434-440.  https://doi.org/10.1007/s12015-020-09976-7
  17. Paniz‐Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2). Journal of medical virology. 2020;92(7):699-702.  https://doi.org/10.1002/jmv.25915
  18. Chen R, Wang K, Yu J, et al. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Frontiers in neurology. 2021;11:573095. https://doi.org/10.3389/fneur.2020.573095
  19. Deffner F, Scharr M, Klingenstein S, et al. Histological evidence for the enteric nervous system and the choroid plexus as alternative routes of neuroinvasion by SARS-CoV2. Frontiers in Neuroanatomy. 2020;14:596439. https://doi.org/10.3389/fnana.2020.596439
  20. Robinson CP, Busl KM. Neurologic manifestations of severe respiratory viral contagions. Critical care explorations.2020 Apr 29;2(4):e0107. https://doi.org/10.1097/CCE.0000000000000107
  21. Bleau C, Filliol A, Samson M, Lamontagne L. Brain invasion by mouse hepatitis virus depends on impairment of tight junctions and beta interferon production in brain microvascular endothelial cells. Journal of virology. 2015;89(19):9896-9908. https://doi.org/10.1128/jvi.01501-15
  22. Huang X, Hussain B, Chang J. Peripheral inflammation and blood–brain barrier disruption: Effects and mechanisms. CNS neuroscience & therapeutics. 2021;27(1):36-47.  https://doi.org/10.1111/cns.13569
  23. Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the blood–brain barrier. International Journal of Molecular Sciences. 2021;22(5):2681. https://doi.org/10.3390/ijms22052681
  24. Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID‐19. Journal of Thrombosis and Haemostasis. 2020;18(9):2103-2109. https://doi.org/10.1111/jth.14975
  25. Kaur C, Ling EA. Blood brain barrier in hypoxic-ischemic conditions. Current neurovascular research. 2008 Feb;5(1):71-81.  https://doi.org/10.2174/156720208783565645
  26. Rosu GC, Mateescu VO, Simionescu A, et al. Subtle vascular and astrocytic changes in the brain of coronavirus disease 2019 (COVID‐19) patients. European Journal of Neurology. 2022;29(12):3676-3692. https://doi.org/10.1111/ene.15545
  27. Braga J, Lepra M, Kish SJ. NeuroinflammationAfter COVID-19 With Persistent Depressive and Cognitive Symptoms. JAMA Psychiatry. 2023;80(8):787-795.  https://doi.org/10.1001/jamapsychiatry.2023.1321
  28. Zhu Y, Scholle F, Kisthardt SC, Xie DY. Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E. Virology. 2022;571:21-33.  https://doi.org/10.1016/j.virol.2022.04.005
  29. Xiao Z, Xu H, Qu Z Y, et al. Active Ingredients of Reduning Injection Maintain High Potency against SARS-CoV-2 Variants. Chinese Journal of Integrative Medicine. 2023;29(3):205-212.  https://doi.org/10.1007/s11655-022-3686-5
  30. Liu X, Raghuvanshi R, Ceylan FD, Bolling BW. Quercetin and its metabolites inhibit recombinant human angiotensin-converting enzyme 2 (ACE2) activity. Journal of agricultural and food chemistry. 2020;68(47):13982-13989. https://doi.org/10.1021/acs.jafc.0c05064
  31. Pan B, Fang S, Zhang J, et al. Chinese herbal compounds against SARS-CoV-2: puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor. Computational and structural biotechnology journal. 2020;18:3518-3527. https://doi.org/10.1016/j.csbj.2020.11.010
  32. Manjunathan R, Periyaswami V, Mitra K, et al. Molecular docking analysis reveals the functional inhibitory effect of Genistein and Quercetin on TMPRSS2: SARS-COV-2 cell entry facilitator spike protein. BMC bioinformatics. 2022;23(1):180.  https://doi.org/10.1186/s12859-022-04724-9
  33. Munafò F, Donati E, Brindani N, et al. Quercetin and luteolin are single-digit micromolar inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase. Scientific Reports. 2022;12(1):10571. https://doi.org/10.1038/s41598-022-14664-2
  34. Goc A, Rath M, Niedzwiecki A. Composition of naturally occurring compounds decreases activity of Omicron and SARS-CoV-2 RdRp complex. European Journal of Microbiology and Immunology. 2022;12(2):39-45.  https://doi.org/10.1556/1886.2022.00009
  35. Cherrak SA, Merzouk H, Mokhtari-Soulimane N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. Plos one. 2020;15(10):e0240653. https://doi.org/10.1371/journal.pone.0240653
  36. Khan, S, Hussain, A, Vahdani, Y, et al. Exploring the interaction of quercetin-3-O-sophoroside with SARS-CoV-2 main proteins by theoretical studies: A probable prelude to control some variants of coronavirus including Delta. Arabian Journal of Chemistry. 2021;14(10):103353. https://doi.org/10.1016/j.arabjc.2021.103353
  37. Cui J, Zong W, Zhao N, Yuan R. Burdock (Arctiumlappa L.) leaf flavonoids rich in morin and quercetin 3‐O‐rhamnoside ameliorate lipopolysaccharide‐induced inflammation and oxidative stress in RAW264. 7 cells. Food Science & Nutrition. 2022;10(8):2718-2726. https://doi.org/10.1002/fsn3.2875
  38. Cos P, Ying L, Calomme M, et al. Structure — activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. Journal of natural products. 1998;61(1):71-76.  https://doi.org/10.1021/np970237h
  39. Pauff JM, Hille R. Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin. Journal of natural products. 2009;72(4):725-731.  https://doi.org/10.1021/np8007123
  40. Nagao A, Sek, M, Kobayashi H. Inhibition of xanthine oxidase by flavonoids. Bioscience, biotechnology, and biochemistry. 1999;63(10):1787-1790. https://doi.org/10.1271/bbb.63.1787
  41. Xue Y, Du M, Zhu MJ. Quercetin suppresses NLRP3 inflammasome activation in epithelial cells triggered by Escherichia coli O157: H7. Free radical biology and medicine. 2017;108:760-769.  https://doi.org/10.1016/j.freeradbiomed.2017.05.003
  42. Jiang W, Huang Y, Han N, et al. Quercetin suppresses NLRP3 inflammasome activation and attenuates histopathology in a rat model of spinal cord injury. Spinal Cord. 2016;54(8):592-596.  https://doi.org/10.1038/sc.2015.227
  43. Choe JY, Kim SK. Quercetin and ascorbic acid suppress fructose-induced NLRP3 inflammasome activation by blocking intracellular shuttling of TXNIP in human macrophage cell lines. Inflammation. 2017;40:980-994.  https://doi.org/10.1007/s10753-017-0542-4
  44. Zhang QY, Pan Y, Wang R, et al. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. The Journal of Nutritional Biochemistry. 2014;25(4):420-428.  https://doi.org/10.1016/j.jnutbio.2013.11.014
  45. Pendurthi UR, Ghosh S, Mandal S, et al. Tissue factor activation: is disulfide bond switching a regulatory mechanism? Blood, The Journal of the American Society of Hematology. 2007;110(12):3900-3908. https://doi.org/10.1182/blood-2007-07-101469
  46. Lin L, Gopal S, Sharda A, et al, Quercetin-3-rutinoside inhibits protein disulfide isomerase by binding to its b′x domain. Journal of Biological Chemistry. 2015;290(39):23543-23552. https://doi.org/10.1074/jbc.M115.666180
  47. Stopa JD, Zwicker JI. The intersection of protein disulfide isomerase and cancer associated thrombosis. Thrombosis research. 2018;164:S130-S135. https://doi.org/10.1016/j.thromres.2018.01.005
  48. Shohan M, Nashibi R, Mahmoudian-Sani MR, et al. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: A randomized controlled trial. European journal of pharmacology. 2022;914:174615. https://doi.org/10.1016/j.ejphar.2021.174615
  49. Onal H, Arslan B, Ergun NU, et al. Treatment of COVID-19 patients with quercetin: A prospective, single-centre, randomized, controlled trial. Authorea Preprints.2021;45(4):518-529.  https://doi.org/10.22541/au.161106492.28349832/v1
  50. Di Pierro F. Derosa G, Maffioli P, et al. Possible therapeutic effects of adjuvant quercetin supplementation against early-stage COVID-19 infection: a prospective, randomized, controlled, and open-label study. International journal of general medicine. 2021;14:2359-2366. https://doi.org/10.2147/IJGM.S318720
  51. Rondanelli M, Perna S, Gasparri C, et al. Promising effects of 3-month period of quercetin phytosome® supplementation in the prevention of symptomatic COVID-19 disease in healthcare workers: A pilot study. Life. 2022;12(1):66.  https://doi.org/10.3390/life12010066
  52. Di Pierro F, Iqtadar S, Khan A, et al. Potential clinical benefits of quercetin in the early stage of COVID-19: results of a second, pilot, randomized, controlled and open-label clinical trial. International journal of general medicine. 2021 Jun 24;14:2807-2816. https://doi.org/10.2147/IJGM.S318949
  53. Amiri-Dashatan N, Koushki M, Parsamanesh N, et al. Serum cortisol concentration and COVID-19 severity: a systematic review and meta-analysis. Journal of Investigative Medicine. 2022;70(3):766-772.  https://doi.org/10.1136/jim-2021-001989
  54. Peña-Bautista C, Casas-Fernández E, Vento M, et al. Stress and neurodegeneration. ClinicaChimicaActa. 2020; 503:163-168.  https://doi.org/10.1016/j.cca.2020.01.019
  55. Hammen C. Stress and depression. Annu. Rev. Clin. Psychol. 2005;1:293-319.  https://doi.org/10.1146/annurev.clinpsy.1.102803.143938
  56. Salari N, Hosseinian-Far A, Jalali R, et al. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. Globalization and health. 2020;16(1):1-11.  https://doi.org/10.1186/s12992-020-00589-w
  57. Mahmud S, Mohsin M, Dewan MN, Muyeed A. The global prevalence of depression, anxiety, stress, and insomnia among general population during COVID-19 pandemic: A systematic review and meta-analysis. Trends in Psychology.2021;7(7):e07393. https://doi.org/10.1007/s43076-021-00116-9
  58. Welcome MO, Mastorakis NE. Stress-induced blood brain barrier disruption: Molecular mechanisms and signaling pathways. Pharmacological research. 2020;157:104769. https://doi.org/10.1016/j.phrs.2020.104769
  59. Fu Y-W, H-S Xu, Liu S-J. COVID-19 and neurodegenerative diseases. European Review for Medical & Pharmacological Sciences. 2022;26(12):4535-4544. https://doi.org/10.26355/eurrev_202206_29093
  60. Rahmati M, Yon DK, Lee SW, et al, New‐onset neurodegenerative diseases as long‐term sequelae of SARS‐CoV‐2 infection: a systematic review and meta‐analysis. Journal of medical virology. 2023;95(7):e28909. https://doi.org/10.1002/jmv.28909
  61. Катасонов А.Б., Дигидрокверцетин как системный нейропротектор для профилактики и лечения β-амилоид-ассоциированных заболеваний головного мозга. Журнал неврологии и психиатрии им. С.С. Корсакова. 2023;123(7):136-142.  https://doi.org/10.17116/jnevro2023123071136
  62. Kandemir K, Tomas M, McClements DJ, et al. Recent advances on the improvement of quercetin bioavailability. Trends in Food Science & Technology. 2022;119:192-200.  https://doi.org/10.1016/j.tifs.2021.11.032
  63. Harwood M, Danielewska-Nikiel B, Borzelleca JF, et al. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties.»Food and chemical toxicology.2007;45(11):2179-205.  https://doi.org/10.1016/j.fct.2007.05.015

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.