The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Gayduk A.J.

Samara State Medical University

Vlasov Ya.V.

Samara State Medical University

Smirnova D.A.

Samara State Medical University

Application of modern approaches in the screening and early diagnosis programs for the orphan diseases

Authors:

Gayduk A.J., Vlasov Ya.V., Smirnova D.A.

More about the authors

Read: 3047 times


To cite this article:

Gayduk AJ, Vlasov YaV, Smirnova DA. Application of modern approaches in the screening and early diagnosis programs for the orphan diseases. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(6):30‑39. (In Russ.)
https://doi.org/10.17116/jnevro202212206130

Recommended articles:
Natu­ral history of spinal muscular atro­phy type I. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):34-41
Therapeutic targets of adolescent depression with atte­nuated symptoms of schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):69-74
5q spinal muscular atro­phy in adults. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(3):142-147
M. geni­talium-infection. Correlation between pathogen’s DNA concentration and clinical picture of disease. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(4):446-452

References:

  1. Liu Z, Zhu L, Roberts R, et al. Toward Clinical Implementation of Next-Generation Sequencing-Based Genetic Testing in Rare Diseases: Where Are We? Trends in Genetics. 2019;35(11):852-867.  https://doi.org/10.1016/j.tig.2019.08.006
  2. Ferreira CR. The burden of rare diseases. Am J Med Gen. 2019;179(6):885-892.  https://doi.org/10.1002/ajmg.a.61124
  3. Shen T, Lee A, Shen C, et al. The long tail and rare disease research: the impact of next-generation sequencing for rare Mendelian disorders. Gen Res. 2015;97:e15.  https://doi.org/10.1017/S0016672315000166
  4. Newborn Screening Program (NBS). California Department of Public Health. Retrieved 21 December 2019. Accessed: 12.06.20.  https://www.cdph.ca.gov/Programs/CFH/DGDS/Pages/nbs/default.aspx
  5. Hohenfellner K, Bergmann C, Fleige T, et al. Molecular based newborn screening in Germany: Follow-up for cystinosis. Mol Gen Metabol Rep. 2019;21:100514. https://doi.org/10.1016/j.ymgmr.2019.100514
  6. Hokkaido Prefecture Official Website. Accessed: 12.06.20.  https://www.pref.hokkaido.lg.jp/hf/kms/ninshin/file/pdf_kensa_pamph_en.pdf
  7. Wiley V, Webster D, Loeber G. On behalf of ISNS2019 Local Organising Committee Meeting Report. Screening Pathways through China, the Asia Pacific Region, the World. Int J Neonatal Screen. 2019;5:26-30.  https://doi.org/10.3390/ijns5030026
  8. Гайдук А.Я., Власов Я.В., Захарова Е.Ю. Актуальные проблемы оказания медицинской помощи пациентам с орфанными заболеваниями в Российской Федерации. Медицинская генетика. 2020;19(11):13-20. 
  9. Gayduk AI, Vlasov YaV, Zakharova EYu. Current problems of providing medical care for patients with orphan diseases in the Russian Federation. Medical Genetics. 2020;19(11):13-20. (In Russ.). https://doi.org/10.25557/2073-7998.2020.11.13-20
  10. Araujo A, Araujo M, Swoboda K. Vascular perfusion abnormalities in infants with spinal muscular atrophy. J Pediatr. 2009;155(2):292-294.  https://doi.org/10.1016/j.jpeds.2009.01.071
  11. Keinath MC, Prior DE, Prior TW. Spinal Muscular Atrophy: Mutations, Testing, and Clinical Relevance. Appl Clin Gen. 2021;14:11-25.  https://doi.org/10.2147/TACG.S239603
  12. Vill K, Kölbel H, Schwartz O, et al. One Year of Newborn Screening for SMA — Results of a German Pilot Project. J Neuromuscular Dis. 2019;6(4):503-515.  https://doi.org/10.3233/JND-190428
  13. Kay DM, Stevens CF, Parker A, et al. Implementation of population-based newborn screening reveals low incidence of spinal muscular atrophy. Gen Med. 2020;22(8):1296-1302. https://doi.org/10.1038/s41436-020-0824-3
  14. Fleige T, Burggraf S, Czibere L, et al. Next generation sequencing as second-tier test in high-throughput newborn screening for nephropathic cystinosis. Eur J Hum Gen. 2020;28(2):193-201.  https://doi.org/10.1038/s41431-019-0521-3
  15. Lampret BR, Remec ŽI, Torkar AD, et al. Expanded Newborn Screening Program in Slovenia using Tandem Mass Spectrometry and Confirmatory Next Generation Sequencing Genetic Testing. Zdravstveno Varstvo. 2020;59(4):256-263.  https://doi.org/10.2478/sjph-2020-0032
  16. Yang Y, Wang L, Wang B, et al. Application of Next-Generation Sequencing Following Tandem Mass Spectrometry to Expand Newborn Screening for Inborn Errors of Metabolism: A Multicenter Study. Front Gen. 2019;10:86-89.  https://doi.org/10.3389/fgene.2019.00086
  17. Momosaki K, Kido J, Yoshida S, et al. Newborn screening for Pompe disease in Japan: literature review of mutations in the GAA gene. J Hum Gen. 2019;64(8):741-755.  https://doi.org/10.1038/s10038-019-0603-7
  18. Strand J, Gul KA, Erichsen HC, et al. Second-Tier Next Generation Sequencing Integrated in Nationwide Newborn Screening Provides Rapid Molecular Diagnostics of Severe Combined Immunodeficiency. Front Immunol. 2020;11:1417. https://doi.org/10.3389/fimmu.2020.01417
  19. Skov M, Baekvad-Hansen M, Hougaard DM., et al. Cystic fibrosis newborn screening in Denmark: Experience from the first 2 years. Ped Pulm. 2019;55(2):549-555.  https://doi.org/10.1002/ppul.24564
  20. Baynam G, Bowman F, Lister K, et al. Improved Diagnosis for Rare Diseases through Implementation of Precision Public Health Framework. Adv Exp Med Biol. 2017;1031:55-94.  https://doi.org/10.1007/978-3-319-67144-4_4
  21. Kirk E, Ong R, Boggs K, et al. Gene selection for the Australian Reproductive Genetic Carrier Screening Project («Mackenzie’s Mission»). Eur J Hum Gen. 2021;29(1):79-87.  https://doi.org/10.1038/s41431-020-0685-x
  22. Standing Committee on Screening. Genomic Tests in Population Based Screening Programs: Statement. https://www.health.gov.au/sites/default/files/documents/2020/10/genomic-tests-in-population-based-screening-programs-position-statement.pdf
  23. 2018 Commonwealth of Australia as represented by the Department of Health. Implementation Plan—National Health Genomics Policy Framework. 2018;978-1-76007-363-3 (online version). https://www.health.gov.au/sites/default/files/documents/2022/03/national-health-genomics-policy-framework-2018-2021-implementation-plan.pdf
  24. Commonwealth of Australia as represented by the Department of Health 2020. The National Strategic Action Plan for Rare Diseases. https://www.health.gov.au/sites/default/files/documents/2020/03/national-strategic-action-plan-for-rare-diseases.docx
  25. Commonwealth of Australia as represented by the Department of Health 2017. Newborn Bloodspot Screening National Policy Framework. https://www.health.gov.au/sites/default/files/documents/2020/10/newborn-bloodspot-screening-national-policy-framework.pdf
  26. Commonwealth of Australia 2018, National Health and Medical Research Council. Ethical conduct in research with Aboriginal and Torres Strait Islander Peoples and communities: Guidelines for researchers and stakeholders. https://www.arts.unsw.edu.au/sites/default/files/documents/indigenousethicalguidelines.pdf
  27. Official site of the Mackenzie’s mission. Date of access — 03.30.2021. https://www.mackenziesmission.org.au/
  28. 2010 Government Western Australia, Department of Health. Guidelines for human biobanks, genetic research databases and associated data. https://rgs.health.wa.gov.au/Documents/Guidelines%20biobanks%20genetic%20databases.pdf
  29. 2016 Government Western Australia, Acting Australian Information Commissioner. My Health Records (Information Commissioner Enforcement Powers) Guidelines 2016. https://www.legislation.gov.au/Details/F2016L00360
  30. Official website of the US Department of Health, date of access 2.04.2021. https://www.hrsa.gov/advisory-committees/heritable-disorders/rusp/index.html#:~:text=The%20RUSP%20is%20a%20list,newborn%20screening%20(NBS)%20programs
  31. Act, 42 U.S.C. 217a: Advisory councils or committees. https://www.govinfo.gov/content/pkg/USCODE-2010-title42/pdf/USCODE-2010-title42-chap6A-subchapI-partA-sec217a.pdf
  32. USA public law. 110-204—APR. 24, 2008 (Newborn Screening Saves Lives Reauthorization Act of 2019). https://www.congress.gov/110/plaws/publ204/PLAW-110publ204.pdf
  33. Website of the public organization Everylife Foundation For Rare Diseases, 2.04.2021. https://everylifefoundation.org/newborn-screening
  34. Johnson K, Lloyd-Puryear M, Mann MY, et al. Pediatrics. 2006;117(suppl 3):270-279.  https://doi.org/10.1542/peds.2005-2633F
  35. Regulation EC No. 141/2000 of December 16, 1999 «on Orphan Medicinal Products». https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000R0141
  36. Fischer KE, Rogowski WH. Funding Decisions for Newborn Screening: A Comparative Review of 22 Decision Processes in Europe. Int J Environ Res Public Health. 2014;11:5403-5430. https://doi.org/10.3390/ijerph110505403
  37. Directive 2011/24 / EU of the European Parliament and of the Council.
  38. Materials of the round table on the topic «Ethical problems of the use of exome sequencing in neonatal genetic screening» 03/17/2021, Pirogov University official website, date of access 04.07.21. (In Russ.). https://rsmu.ru/structure/edu-dept/lf/school-general-medicine-about/lf-news/novostnaja-stranica/?tx_news_pi1%5Bnews%5D=9354&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&cHash=e1a1c832df1853d145766962013cd256
  39. Sails AD. Applications in Clinical Microbiology. Real-Time PCR: Current Technology and Applications. Caister Academic Press. 2009.
  40. Thakur N, Reddy DN, Rao GV, et al. A novel mutation in STK11 gene is associated with Peutz-Jeghers Syndrome in Indian patients. BMC Med Gen. 2006;7:73.  https://doi.org/10.1186/1471-2350-7-73
  41. Voinova VYu, Nikolaeva EA, Shcherbakova NV, Yablonskaya MI. High-performance DNA sequencing to identify genetically determined diseases in pediatric practice. Rossiyskiy Vestnik Perinatologii i Pediatrii. 2019;64:(1):103-109. (In Russ.). https://doi.org/10.21508/1027-4065-2019-64-1-103-109
  42. Savvina MT, Sukhomyamova AL, Golikova PI, et al. Oligonucleotide microarray based method for simultaneous diagnostic of 3-M syndrome, SOPH syndrome, tyrosinemia type 1, methaemoglobinaemia type 1, nonsyndromic hearing loss and deafness (DFNB1). Medical Genetics. 2019;18(9):24-33. (In Russ.). https://doi.org/10.25557/2073-7998.2019.09.24-33
  43. Spitsina AM, Orlov YuL, Podkolodnaya NN, et al. Supercomputer analysis of genomic and transcriptomic data obtained using high-throughput DNA sequencing technologies. Software Systems: Theory and Applications. 2015;1(24):34-39. (In Russ.).
  44. Borodinov AG, Manoilov VV, Zarutskiy IV, et al. Generations of DNA sequencing methods (review). Scientific Instrumentation. 2020;30(4):3-20. (In Russ.).
  45. Feng Y, Ge X, Meng L, et al. The next generation of population-based spinal muscular atrophy carrier screening: comprehensive pan-ethnic SMN1 copy-number and sequence variant analysis by massively parallel sequencing. Gen Med. 2017;19:936-944.  https://doi.org/10.1038/gim.2016.215
  46. Lopez-Lopez D, Loucera C, Carmona R, et al. SMN1 copy-number and sequence variant analysis from next-generation sequencing data. Hum Mut. 2017;41(12):2073-2077. https://doi.org/10.1002/humu.24120
  47. Van Campen JC, Sollars E, Thomas RC, et al. Next Generation Sequencing in Newborn Screening in United Kingdom Health Service. Int J Neonat Screen. 2019;5(4):40-46.  https://doi.org/10.3390/ijns5040040
  48. Trier C, Fournous G, Strand JM, et al. Next-generation sequencing of newborn screening genes: the accuracy of short-read mapping. NPJ Gen Med. 2020;5:36-40.  https://doi.org/10.1038/s41525-020-00142-z
  49. Miller EM, Patterson NE, Zechmeister JM, et al. Development and validation of a targeted next generation DNA sequencing panel outperforming whole exome sequencing for the identification of clinically relevant genetic variants. Oncotarget. 2017;8(60):102033-102045. https://doi.org/10.18632/oncotarget.22116
  50. Okuneva EG, Kozina AA, Baryshnikova NV, et al. The utility of exome sequencing in diagnosis of hereditary diseases. Medical Genetics. 2020;19(12):18-24. (In Russ.). https://doi.org/10.25557/2073-7998.2020.12.18-24
  51. Burdick KJ, Cogan JD, Rives LC, et al. Limitations of exome sequencing in detecting rare and undiagnosed diseases. Am J Medl Gen. Part A. 2020;182(6):1400-1406. https://doi.org/10.1002/ajmg.a.61558
  52. Clark MJ, Chen R, Lam HY, et al. (2011). Performance comparison of exome DNA sequencing technologies. Nature Biotechnol. 2011;29(10):908-914.  https://doi.org/10.1038/nbt.1975
  53. Botkin JR, Rothwell E. Whole Genome Sequencing and Newborn Screening. Cur Gen Med Rep. 2016;4(1):1-6.  https://doi.org/10.1007/s40142-016-0084-3
  54. Lionel A, Costain G, Monfared N, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Gen Med. 2018;20:435-443.  https://doi.org/10.1038/gim.2017.119
  55. Wang T, Ma J, Zhang Q, et al. Expanded Newborn Screening for Inborn Errors of Metabolism by Tandem Mass Spectrometry in Suzhou, China: Disease Spectrum, Prevalence, Genetic Characteristics in a Chinese Population. Front Gen. 2019;10:1052-1059. https://doi.org/10.3389/fgene.2019.01052
  56. Baydakova GV, Ivanova TA, Zakharova EYu, Kokorina OS. The role of tandem mass spectrometry in the diagnosis of hereditary metabolic diseases. Rus J Ped Hematol Oncol. 2018;3:34-39. (In Russ.). https://doi.org/10.17650/2311-1267-2018-5-3-96-105
  57. Romanelli Tavares VL, Monfardini F, Lourenço NCV, et al. Newborn Screening for 5q Spinal Muscular Atrophy: Comparisons between Real-Time PCR Methodologies and Cost Estimations for Future Implementation Programs. Int J Neonat Screen. 2021;7(3):53.  https://doi.org/10.3390/ijns7030053
  58. Next Generation DNA Sequencing: A Review of the Cost Effectiveness and Guidelines [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2014 Feb 6. Appendix 5, Summary of findings — cost-effectiveness of next generation sequencing. https://www.ncbi.nlm.nih.gov/books/NBK274079/
  59. Grosse SD, Gudgeon JM. Cost or price of sequencing? Implications for economic evaluations in genomic medicine. Genet Med. 2021;23:1833-1835. https://doi.org/10.1038/s41436-021-01223-9
  60. Gordon LG, White NM, Elliott TM, et al. Estimating the costs of genomic sequencing in cancer control. BMC Health Serv Res. 2021;20(1):492-495.  https://doi.org/10.1186/s12913-020-05318-y
  61. Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). Accessed 06.11.21.  www.genome.gov/sequencingcostsdata
  62. Zhao Z, Chen C, Sun X, et al. Newborn screening for inherited metabolic diseases using tandem mass spectrometry in China: Outcome and cost-utility analysis. J Med Screen. 2022;29(1):12-20.  https://doi.org/10.1177/09691413211021621

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.