The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Voronina O.L.

N.F. Gamaleya National Research Center for Epidemiology and Microbiology

Ryzhova N.N.

N.F. Gamaleya National Research Center for Epidemiology and Microbiology

Kunda M.S.

N.F. Gamaleya National Research Center for Epidemiology and Microbiology

Ermolova E.I.

N.F. Gamaleya National Research Center for Epidemiology and Microbiology

Goncharova E.R.

N.F. Gamaleya National Research Center for Epidemiology and Microbiology;
I.M. Sechenov First Moscow State Medical University

Samarina M.S.

N.F. Gamaleya National Research Center for Epidemiology and Microbiology;
I.M. Sechenov First Moscow State Medical University

Kustova M.A.

N.F. Gamaleya National Research Center for Epidemiology and Microbiology;
I.M. Sechenov First Moscow State Medical University

Karpova T.I.

N.F. Gamaleya National Research Center for Epidemiology and Microbiology

Klimova E.A.

Russian University of Medicine

Melkumyan A.R.

National Medical Research Center of Coloproctology named after A.N. Ryzhikh;
Research Institute for Healthcare Organization and Medical Management of Moscow Healthcare Department

Tartakovsky I.S.

N.F. Gamaleya National Research Center for Epidemiology and Microbiology

Dynamics of the spectrum of genotypes of Listeria monocytogenes, which caused invasive listeriosis during the period of circulation of sars-cov-2 Omicron variants

Authors:

Voronina O.L., Ryzhova N.N., Kunda M.S., Ermolova E.I., Goncharova E.R., Samarina M.S., Kustova M.A., Karpova T.I., Klimova E.A., Melkumyan A.R., Tartakovsky I.S.

More about the authors

Read: 1400 times


To cite this article:

Voronina OL, Ryzhova NN, Kunda MS, et al. . Dynamics of the spectrum of genotypes of Listeria monocytogenes, which caused invasive listeriosis during the period of circulation of sars-cov-2 Omicron variants. Molecular Genetics, Microbiology and Virology. 2024;42(3):29‑36. (In Russ.)
https://doi.org/10.17116/molgen20244203129

References:

  1. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282(1821):20143085. https://doi.org/10.1098/rspb.2014.3085
  2. Bohannon CD, Ende Z, Cao W, Mboko WP, Ranjan P, Kumar A, et al. Influenza Virus Infects and Depletes Activated Adaptive Immune Responders. Adv Sci (Weinh). 2021;8(16):e2100693. https://doi.org/10.1002/advs.202100693
  3. Mina MJ, Kula T, Leng Y, Li M, de Vries RD, Knip M, et al. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science. 2019;366(6465):599-606.  https://doi.org/10.1126/science.aay6485
  4. Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier CML, Patel SK, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022;23(2):210-216.  https://doi.org/10.1038/s41590-021-01113-x
  5. Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70(4):698-706.  https://doi.org/10.1136/gutjnl-2020-323020
  6. Voronina O.L., Ryzhova N.N., Kunda M.S., Aksenova E.I., Karpova T.I., Melkumyan A.R., et al. Outcomes of the multicenter monitoring of the causative agent of invasive listeriosis in the metropolis. Journal of microbiology, epidemiology and immunobiology. 2023;100(3):143-154. (In Russ.). https://doi.org/10.36233/0372-9311-393
  7. Klimova E.A., Voronina O.L., Karetkina G.N., Posukhovsky E.A., Ryzhova N.N., Kunda M.S et al. Listeriosis and the COVID-19 pandemic. Infectious Diseases: News, Opinions, Training. 2022;11(1):102-12. (In Russ.). https://doi.org/10.33029/2305-3496-2022-11-1-102-112
  8. Voronina O.L., Kunda M.S., Ryzhova N.N., Aksenova E.I., Kustova M.A., Karpova T.I., et al. Listeria monocytogenes ST37 Distribution in the Moscow Region and Properties of Clinical and Foodborne Isolates. Life 2023, 13, 2167. https://doi.org/10.3390/life13112167
  9. Moura A., Criscuolo A., Pouseele H., Maury M. M. , Leclercq A., Tarr C. , et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat. Microbiol. 2016;2:16185. https://doi.org/10.1038/nmicrobiol.2016.185
  10. Chen L., Yang J., Yu J., Yao Z., Sun L., Jin Q. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 2005;33(Issue suppl. 1):D325-328.  https://doi.org/10.1093/nar/gki008
  11. Alcock B.P., Huynh W., Chalil R., Smith K.W., Raphenya A.R., Wlodarski M.A. et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023;51(D1):D690-699.  https://doi.org/10.1093/nar/gkac920
  12. Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020 Nov;5(11):1403-1407. https://doi.org/10.1038/s41564-020-0770-5
  13. Latif AA, Mullen JL, Alkuzweny M, Tsueng G, Cano M, Haag E, et al.; and the Center for Viral Systems Biology. Moscow City, Russia Variant Report. outbreak.info, URL: https://outbreak.info/location-reports?xmin=2021-02-26&xmax=2021-08-09&loc=RUS_RU-TW9zY293IENpdHk/
  14. Chatterjee S, Bhattacharya M, Nag S, Dhama K, Chakraborty C. A Detailed Overview of SARS-CoV-2 Omicron: Its Sub-Variants, Mutations and Pathophysiology, Clinical Characteristics, Immunological Landscape, Immune Escape, and Therapies. Viruses. 2023;15(1):167.  https://doi.org/10.3390/v15010167
  15. Tomáštíková Z, Gelbíčová T., karpíšková R. Population structure of Listeria monocytogenes isolated from human listeriosis cases and from ready-to-eat foods in the Czech Republic. J. Food Nutr. Res. 2019;58: 99-106. 
  16. Cabal A, Pietzka A, Huhulescu S, Allerberger F, Ruppitsch W, Schmid D. Isolate-Based Surveillance of Listeria monocytogenes by Whole Genome Sequencing in Austria. Front Microbiol. 2019;10:2282. https://doi.org/10.3389/fmicb.2019.02282
  17. Wieczorek K, Bomba A, Osek J. Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Fish and Fish Production Environments in Poland. Int J Mol Sci. 2020;21(24):9419. https://doi.org/10.3390/ijms21249419
  18. Voronina O.L., Kunda M.S., Ryzhova N.N., Kutuzova A.V., Aksenova E.I., Karpova T.I. et al. Listeriosis: genotyping as a key for identification a possible source of infection. Clinical Microbiology and Antimicrobial Chemotherapy. 2019;21(4):261-273. (In Russ.). https://doi.org/10.36488/cmac.2019.4.261-273
  19. Tsai YH, Moura A, Gu ZQ, Chang JH, Liao YS, Teng RH, et al. Genomic Surveillance of Listeria monocytogenes in Taiwan, 2014 to 2019. Microbiol Spectr. 2022;10(6):e0182522. https://doi.org/10.1128/spectrum.01825-22
  20. Pérez-Trallero E., Zigorraga C., Artieda J., Alkorta M., Marimón J.M. Two outbreaks of Listeria monocytogenes infection, Northern Spain. Emerging Infectious Diseases, 2014, 20(12): 2155-2157. https://doi.org/10.3201/eid2012.140993
  21. Voronina O.L., Kunda M.S., Ryzhova N.N., Aksenova E.I., Semenov A.N., Kurnaeva M.A., et al. Regularities of the Ubiquitous Polyhostal Microorganisms Selection by the Example of Three Taxa. Molecular Biology. 2015,49(3):380-390. (In Russ.). https://doi.org/10.1134/S0026893315030176
  22. Voronina O.L., Tartakovsky I.S., Yuyshchuk N.D., Ryzhova N.N., Kunda M.S., Aksenova E.I. et al.. Analysis of sporadic cases of invasivelisteriosis in a metropolis. Journal of microbiology, epidemiology and immunobiology. 2020;97(6):547-555. (In Russ.). https://doi.org/10.36233/0372-9311-2020-97-6-3
  23. den Bakker HC, Desjardins CA, Griggs AD, Peters JE, Zeng Q, Young SK, et al. Evolutionary dynamics of the accessory genome of Listeria monocytogenes. PLoS One. 2013;8(6):e67511. https://doi.org/10.1371/journal.pone.0067511
  24. Lomonaco S, Nucera D, Filipello V. The evolution and epidemiology of Listeria monocytogenes in Europe and the United States. Infect Genet Evol. 2015;35:172-83.  https://doi.org/10.1016/j.meegid.2015.08.008
  25. Cantinelli T, Chenal-Francisque V, Diancourt L, Frezal L, Leclercq A, Wirth T, et al. “Epidemic clones” of Listeria monocytogenes are widespread and ancient clonal groups. J Clin Microbiol. 2013;51(11):3770-9.  https://doi.org/10.1128/JCM.01874-13
  26. Lomonaco S, Verghese B, Gerner-Smidt P, Tarr C, Gladney L, Joseph L et al. Novel epidemic clones of Listeria monocytogenes, United States, 2011. Emerg Infect Dis. 2013;19(1):147-50.  https://doi.org/10.3201/eid1901.121167
  27. Bergholz TM, den Bakker HC, Katz LS, Silk BJ, Jackson KA, Kucerova Z, et al. Determination of Evolutionary Relationships of Outbreak-Associated Listeria monocytogenes Strains of Serotypes 1/2a and 1/2b by Whole-Genome Sequencing. Appl Environ Microbiol. 2015;82(3):928-38.  https://doi.org/10.1128/AEM.02440-15
  28. Chen Y, Gonzalez-Escalona N, Hammack TS, Allard MW, Strain EA, Brown EW. Core Genome Multilocus Sequence Typing for Identification of Globally Distributed Clonal Groups and Differentiation of Outbreak Strains of Listeria monocytogenes. Appl Environ Microbiol. 2016;82(20):6258-6272. https://doi.org/10.1128/AEM.01532-16
  29. Moura A, Leclercq A, Vales G, Tessaud-Rita N, Bracq-Dieye H, Thouvenot P, et al. Phenotypic and genotypic antimicrobial resistance of Listeria monocytogenes: an observational study in France. Lancet Reg Health Eur. 2023;37:100800. https://doi.org/10.1016/j.lanepe.2023.100800
  30. Healthcare in Russia. 2023: Statistical collection/Rosstat. M.: Federal State Statistics Service; 2023. (In Russ). https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2023.pdf

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.