The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Saliutina M.V.

Centre for Strategic Planning and Management of Biomedical Health Risks

Opportunities of multi-omics approach for the search for new diagnostic and therapeutic targets in multiple sclerosis

Authors:

Saliutina M.V.

More about the authors

Read: 1552 times


To cite this article:

Saliutina MV. Opportunities of multi-omics approach for the search for new diagnostic and therapeutic targets in multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(5):57‑62. (In Russ.)
https://doi.org/10.17116/jnevro202212205157

Recommended articles:
Surgical treatment of seco­ndary trigeminal neuralgia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):203-209
Quality of life of patients with multiple scle­rosis in the Smolensk region. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):36-40
Hormonal contraception methods and multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):24-30
Epidemiology of multiple scle­rosis in the city of Novo­sibirsk. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):119-127
Vita­min D role in oral cavity diseases. Stomatology. 2025;(1):81-86

References:

  1. Wallin MT, Culpepper WJ, Nichols E, et al. Global, regional, and national burden of multiple sclerosis 1990—2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(3):269-285.  https://doi.org/10.1016/S1474-4422(18)30443-5
  2. Frischer JM, Bramow S, Dal-Bianco A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132(5):1175-1189. https://doi.org/10.1093/brain/awp070
  3. Solomon AJ, Klein EP, Bourdette D. «Undiagnosing» multiple sclerosis: The challenge of misdiagnosis in MS. Neurology. 2012;78(24):1986-1991. https://doi.org/10.1212/WNL.0b013e318259e1b2
  4. Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Diagnosis of multiple sclerosis: progress and challenges. The Lancet. 2017;389(10076):1336-1346. https://doi.org/10.1016/S0140-6736(16)30959-X
  5. Risk Alleles for Multiple Sclerosis Identified by a Genomewide Study. N Engl J Med. 2007;357(9):851-862.  https://doi.org/10.1056/NEJMoa073493
  6. Consortium IMSG. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019 Sep 27;365(6460):eaav7188. https://doi.org/10.1126/science.aav7188
  7. Mitrovič M, Patsopoulos NA, Beecham AH, et al. Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell. 2018;175(6):1679-1687.e7.  https://doi.org/10.1016/j.cell.2018.09.049
  8. Bashinskaya VV, Kulakova OG, Kiselev IS, et al. GWAS-identified multiple sclerosis risk loci involved in immune response: Validation in Russians. J Neuroimmunol. 2015;282:85-91.  https://doi.org/10.1016/j.jneuroim.2015.03.015
  9. Waller R, Woodroofe MN, Wharton SB, et al. Gene expression profiling of the astrocyte transcriptome in multiple sclerosis normal appearing white matter reveals a neuroprotective role. J Neuroimmunol. 2016;299:139-146.  https://doi.org/10.1016/j.jneuroim.2016.09.010
  10. Itoh N, Itoh Y, Tassoni A, et al. Cell-specific and region-specific transcriptomics in the multiple sclerosis model: Focus on astrocytes. Proc Natl Acad Sci. 2018;115(2):E302-9.  https://doi.org/10.1073/pnas.1716032115
  11. Schirmer L, Schafer DP, Bartels T, et al. Diversity and Function of Glial Cell Types in Multiple Sclerosis. Trends Immunol. 2021;42(3):228-247.  https://doi.org/10.1016/j.it.2021.01.005
  12. Jäkel S, Agirre E, Mendanha Falcão A, et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature. 2019;566(7745):543-547.  https://doi.org/10.1038/s41586-019-0903-2
  13. Schirmer L, Velmeshev D, Holmqvist S, et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature. 2019;573(7772):75-82.  https://doi.org/10.1038/s41586-019-1404-z
  14. Dachet F, Brown JB, Valyi-Nagy T, et al. Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain. Sci Rep. 2021;11(1):6078. https://doi.org/10.1038/s41598-021-85801-6
  15. Acquaviva M, Menon R, Di Dario M, et al. Inferring Multiple Sclerosis Stages from the Blood Transcriptome via Machine Learning. Cell Rep Med. 2020;1(4):100053. https://doi.org/10.1016/j.xcrm.2020.100053
  16. Galli E, Hartmann FJ, Schreiner B, et al. GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nat Med. 2019;25(8):1290-1300. https://doi.org/10.1038/s41591-019-0521-4
  17. Ramesh A, Schubert RD, Greenfield AL, et al. A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis. Proc Natl Acad Sci. 2020;117(37):22932-22943. https://doi.org/10.1073/pnas.2008523117
  18. Annibali V, Umeton R, Palermo A, et al. Analysis of coding and non-coding transcriptome of peripheral B cells reveals an altered interferon response factor (IRF)-1 pathway in multiple sclerosis patients. J Neuroimmunol. 2018;324:165-171.  https://doi.org/10.1016/j.jneuroim.2018.09.005
  19. Friess J, Hecker M, Roch L, et al. Fingolimod alters the transcriptome profile of circulating CD4+ cells in multiple sclerosis. Sci Rep. 2017;7(1):42087. https://doi.org/10.1038/srep42087
  20. Gandhi KS, McKay FC, Cox M, et al. The multiple sclerosis whole blood mRNA transcriptome and genetic associations indicate dysregulation of specific T cell pathways in pathogenesis. Hum Mol Genet. 2010;19(11):2134-2143. https://doi.org/10.1093/hmg/ddq090
  21. Nickles D, Chen HP, Li MM, et al. Blood RNA profiling in a large cohort of multiple sclerosis patients and healthy controls. Hum Mol Genet. 2013;22(20):4194-4205. https://doi.org/10.1093/hmg/ddt267
  22. Schafflick D, Xu CA, Hartlehnert M, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. 2020;11(1):247.  https://doi.org/10.1038/s41467-019-14118-w
  23. Kim K, Pröbstel A-K, Baumann R, et al. Cell type-specific transcriptomics identifies neddylation as a novel therapeutic target in multiple sclerosis. Brain. 2021;144(2):450-461.  https://doi.org/10.1093/brain/awaa421
  24. Mertins P, Mani DR, Ruggles KV, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534(7605):55-62.  https://doi.org/10.1038/nature18003
  25. Dou Y, Kawaler EA, Cui Zhou D, et al. Proteogenomic Characterization of Endometrial Carcinoma. Cell. 2020;180(4):729-748.e26.  https://doi.org/10.1016/j.cell.2020.01.026
  26. Chen S, Lake BB, Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat Biotechnol. 2019;37(12):1452-1457. https://doi.org/10.1038/s41587-019-0290-0
  27. Holtman IR, Noback M, Bijlsma M, et al. Glia Open Access Database (GOAD): A comprehensive gene expression encyclopedia of glia cells in health and disease. Glia. 2015;63(9):1495-1506. https://doi.org/10.1002/glia.22810
  28. Zhang Y, Chen K, Sloan SA, et al. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. J Neurosci. 2014;34(36):11929-11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014
  29. Mancarci BO, Toker L, Tripathy SJ, et al. Cross-Laboratory Analysis of Brain Cell Type Transcriptomes with Applications to Interpretation of Bulk Tissue Data. eNeuro [Internet]. 2017;4(6). https://doi.org/10.1523/ENEURO.0212-17.2017
  30. Erö C, Gewaltig M-O, Keller D, Markram H. A Cell Atlas for the Mouse Brain. Front Neuroinformatics. 2018;12: 34-39.  https://doi.org/10.3389/fninf.2018.00084
  31. Sunkin SM, Ng L, Lau C, et al. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 2013;41(D1):D996-1008. https://doi.org/10.1093/nar/gks1042
  32. Factor DC, Barbeau AM, Allan KC, et al. Cell Type-Specific Intralocus Interactions Reveal Oligodendrocyte Mechanisms in MS. Cell. 2020;181(2):382-395.e21.  https://doi.org/10.1016/j.cell.2020.03.002

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.