The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Belova A.N.

Privolzhsky Research Medical University

Sheiko G.E.

Privolzhsky Research Medical University

Rakhmanova E.M.

Privolzhsky Research Medical University

Boyko A.N.

Pirogov Russian National Research Medical University (Pirogov University);
Federal Center for Brain and Neurotechnologies

Artificial intelligence capabilities in multiple sclerosis

Authors:

Belova A.N., Sheiko G.E., Rakhmanova E.M., Boyko A.N.

More about the authors

Read: 738 times


To cite this article:

Belova AN, Sheiko GE, Rakhmanova EM, Boyko AN. Artificial intelligence capabilities in multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(5):14‑21. (In Russ.)
https://doi.org/10.17116/jnevro202512505114

Recommended articles:
Arti­ficial inte­lligence in ultrasound diagnosis of thyroid nodu­les. Piro­gov Russian Journal of Surgery. 2024;(12-2):109-116
Comparison of models for prediction of spontaneous preterm birth. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):10-19

References:

  1. Boyko AN, Dolgushin MB, Karalkina MA. New neuroimaging methods in assessing the activity of neuroinflammation in multiple sclerosis. SS. Korsakov Journal of Neurology and Psychiatry. 2023;123(7 vyp 2):8-14. (In Russ.). https://doi.org/10.17116/jnevro20231230728
  2. Walton C, King R, Rechtman L, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult Scler. 2020;26 (14):1816-1821. https://doi.org/10.1177/1352458520970841
  3. Hauser SL, Cree BAC. Treatment of Multiple Sclerosis: A Review. Am J Med. 2020;133(12):1380-1390.e2.  https://doi.org/10.1016/j.amjmed.2020.05.049
  4. Amin M, Martínez-Heras E, Ontaneda D, et al. Artificial Intelligence and Multiple Sclerosis. Curr Neurol Neurosci Rep. 2024;24 (8):233-243.  https://doi.org/10.1007/s11910-024-01354-x
  5. Meskó B, Görög M. A short guide for medical professionals in the era of artificial intelligence. NPJ Digit. Med. 2020;3:126.  https://doi.org/10.1038/s41746-020-00333-z
  6. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56.  https://doi.org/10.1038/s41591-018-0300-7
  7. Toosi A, Bottino AG, Saboury B, et al. A Brief History of AI: How to Prevent Another Winter (A Critical Review). PET Clin. 2021;16(4):449-469.  https://doi.org/10.1016/j.cpet.2021.07.001
  8. Mudey AB, Dhonde AS, Chandrachood MV. Artificial intelligence in healthcare with an emphasis on public health. Cureus. 2024;16(8):e67503. https://doi.org/10.7759/cureus.67503
  9. Bonacchi R, Filippi M, Rocca MA. Role of artificial intelligence in MS clinical practice. Neuroimage Clin. 2022;35:103065. https://doi.org/10.1016/j.nicl.2022.103065
  10. Alshamrani F. Role of artificial intelligence in multiple sclerosis management. Eur Rev Med Pharmacol Sci. 2024;28(10):3542-3547. https://doi.org/10.26355/eurrev_202405_36289
  11. Amin M, Nakamura K, Ontaneda D. Differentiating multiple sclerosis from non-specific white matter changes using a convolutional neural network image classification model. Mult Scler Relat Disord. 2024;82:105420. https://doi.org/10.1016/j.msard.2023.105420
  12. Afzal HMR, Luo S, Ramadan S, et al. The emerging role of artificial intelligence in multiple sclerosis imaging. Mult Scler. 2022;28(6):849-858.  https://doi.org/10.1177/1352458520966298
  13. Shoeibi A, Khodatars M, Jafari M, et al. Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review. Comput Biol Med. 2021;136:104697. https://doi.org/10.1016/j.compbiomed.2021.104697
  14. Inojosa H, Voigt I, Wenk J, et al. Integrating large language models in care, research, and education in multiple sclerosis management. Mult Scler. 2024;30(11-12):1392-1401. https://doi.org/10.1177/13524585241277376
  15. Monaghan AS, Huisinga JM, Peterson DS. The application of principal component analysis to characterize gait and its association with falls in multiple sclerosis. Sci Rep 2021;11:12811. https://doi.org/10.1038/s41598-021-92353-2
  16. Kariri E, Louati H, Louati A, et al. Exploring the Advancements and Future Research Directions of Artificial Neural Networks: A Text Mining Approach. Appl. Sci. 2023;13:3186. https://doi.org/10.3390/app13053186
  17. Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys. 2019;29(2):102-127.  https://doi.org/10.1016/j.zemedi.2018.11.002
  18. Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10(3):257-273.  https://doi.org/10.1007/s12194-017-0406-5
  19. Yoo Y, Tang LYW, Brosch T, et al. Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. Neuroimage Clin. 2017;17:169-178.  https://doi.org/10.1016/j.nicl.2017.10.015
  20. Filippi M, Preziosa P, Arnold DL, et al. Present and future of the diagnostic work-up of multiple sclerosis: the imaging perspective. J Neurol. 2023;270(3):1286-1299. https://doi.org/10.1007/s00415-022-11488-y
  21. Mezzaroba L, Simão ANC, Oliveira SR, et al. Antioxidant and Anti-inflammatory Diagnostic Biomarkers in Multiple Sclerosis: A Machine Learning Study. Mol Neurobiol. 2020;57(5):2167-2178. https://doi.org/10.1007/s12035-019-01856-7
  22. Seitz CB, Steffen F, Muthuraman M, et al. Serum neurofilament levels reflect outer retinal layer changes in multiple sclerosis. Ther Adv Neurol Disord. 2021;14:17562864211003478. https://doi.org/10.1177/17562864211003478
  23. Brummer T, Muthuraman M, Steffen F, et al. Improved prediction of early cognitive impairment in multiple sclerosis combining blood and imaging biomarkers. Brain Commun. 2022;4(4):fcac153. https://doi.org/10.1093/braincomms/fcac153
  24. Gaetani L, Bellomo G, Di Sabatino E, et al. The Immune Signature of CSF in Multiple Sclerosis with and without Oligoclonal Bands: A Machine Learning Approach to Proximity Extension Assay Analysis. Int J Mol Sci. 2023;25(1):139.  https://doi.org/10.3390/ijms25010139
  25. Kaisey M, Solomon AJ. Multiple Sclerosis Diagnostic Delay and Misdiagnosis. Neurol Clin. 2024;42(1):1-13.  https://doi.org/10.1016/j.ncl.2023.07.001
  26. Küstner T, Qin C, Sun C, et al. The intelligent imaging revolution: artificial intelligence in MRI and MRS acquisition and reconstruction. MAGMA. 2024;37(3):329-333.  https://doi.org/10.1007/s10334-024-01179-2
  27. Krüger J, Ostwaldt AC, Spies L, et al. Infratentorial lesions in multiple sclerosis patients: intra- and inter-rater variability in comparison to a fully automated segmentation using 3D convolutional neural networks. Eur Radiol. 2022;32(4):2798-2809. https://doi.org/10.1007/s00330-021-08329-3
  28. Luo X, Piao S, Li H, et al. Multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis and neuropsychiatric systemic lupus erythematosus. Eur Radiol. 2022;32(8):5700-5710. https://doi.org/10.1007/s00330-022-08653-2
  29. Paramzin FN, Kakotkin VV, Burkin DA, et al. Radiomics and artificial intelligence in the differential diagnosis of tumor and non-tumor diseases of the pancreas. Review. Surgical practice (Russia). 2023;(1):53-65. (In Russ.). https://doi.org/10.38181/2223-2427-2023-1-5
  30. Nabizadeh F, Masrouri S, Ramezannezhad E, et al. Artificial intelligence in the diagnosis of multiple sclerosis: A systematic review. Mult Scler Relat Disord. 2022;59:103673. https://doi.org/10.1016/j.msard.2022.103673
  31. Gros C, De Leener B, Badji A, et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage. 2019;184:901-915.  https://doi.org/10.1016/j.neuroimage.2018.09.081
  32. Maggi P, Fartaria MJ, Jorge J, et al. CVSnet: A machine learning approach for automated central vein sign assessment in multiple sclerosis. NMR Biomed. 2020;33(5):e4283. https://doi.org/10.1002/nbm.4283
  33. Zurita M, Montalba C, Labbé T, et al. Characterization of relapsing-remitting multiple sclerosis patients using support vector machine classifications of functional and diffusion MRI data. Neuroimage Clin. 2018;20:724-730.  https://doi.org/10.1016/j.nicl.2018.09.002
  34. Rozenstoks K, Novotny M, Horakova D, et al. Automated Assessment of Oral Diadochokinesis in Multiple Sclerosis Using a Neural Network Approach: Effect of Different Syllable Repetition Paradigms. IEEE Trans Neural Syst Rehabil Eng. 2020;28(1):32-41.  https://doi.org/10.1109/TNSRE.2019.2943064
  35. Kaur R, Chen Z, Motl R, et al. Predicting Multiple Sclerosis From Gait Dynamics Using an Instrumented Treadmill: A Machine Learning Approach. IEEE Trans Biomed Eng. 2021;68(9):2666-2677. https://doi.org/10.1109/TBME.2020.3048142
  36. Voigt I, Inojosa H, Dillenseger A, et al. Digital Twins for Multiple Sclerosis. Front Immunol. 2021;12:669811. https://doi.org/10.3389/fimmu.2021.669811
  37. Basu S, Munafo A, Ben-Amor AF, et al. Predicting disease activity in patients with multiple sclerosis: An explainable machine-learning approach in the Mavenclad trials. CPT Pharmacometrics Syst Pharmacol. 2022;11(7):843-853.  https://doi.org/10.1002/psp4.12796
  38. Plati D, Tripoliti E, Zelilidou S, et al. Multiple Sclerosis Severity Estimation and Progression Prediction Based on Machine Learning Techniques. Annu Int Conf IEEE Eng Med Biol Soc. 2022;2022:1109-1112. https://doi.org/10.1109/EMBC48229.2022.9871213
  39. Pinto MF, Oliveira H, Batista S, et al. Prediction of disease progression and outcomes in multiple sclerosis with machine learning. Sci Rep. 2020;10(1):21038. https://doi.org/10.1038/s41598-020-78212-6
  40. Lopez-Soley E, Martinez-Heras E, Solana E, et al. Diffusion tensor imaging metrics associated with future disability in multiple sclerosis. Sci Rep. 2023;13(1):3565. https://doi.org/10.1038/s41598-023-30502-5
  41. Yousef H, Malagurski Tortei B, Castiglione F. Predicting multiple sclerosis disease progression and outcomes with machine learning and MRI-based biomarkers: a review. J Neurol. 2024;271(10):6543-6572. https://doi.org/10.1007/s00415-024-12651-3
  42. Noteboom S, Seiler M, Chien C, et al. Evaluation of machine learning-based classification of clinical impairment and prediction of clinical worsening in multiple sclerosis. J Neurol. 2024;271(8):5577-5589. https://doi.org/10.1007/s00415-024-12507-w
  43. Sun R, Hsieh KL, Sosnoff JJ. Fall Risk Prediction in Multiple Sclerosis Using Postural Sway Measures: A Machine Learning Approach. Sci Rep. 2019;9(1):16154. https://doi.org/10.1038/s41598-019-52697-2
  44. Yperman J, Becker T, Valkenborg D, et al. Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis. BMC Neurol. 2020;20 (1):105.  https://doi.org/10.1186/s12883-020-01672-w
  45. Kiiski H, Jollans L, Donnchadha SÓ, et al. Machine Learning EEG to Predict Cognitive Functioning and Processing Speed Over a 2-Year Period in Multiple Sclerosis Patients and Controls. Brain Topogr. 2018;31(3):346-363.  https://doi.org/10.1007/s10548-018-0620-4
  46. Chen E, Barile B, Durand-Dubief F, et al. Multiple sclerosis clinical forms classification with graph convolutional networks based on brain morphological connectivity. Front Neurosci. 2024;17:1268860. https://doi.org/10.3389/fnins.2023.1268860
  47. Singh AV, Chandrasekar V, Janapareddy P, et al. Emerging Application of Nanorobotics and Artificial Intelligence To Cross the BBB: Advances in Design, Controlled Maneuvering, and Targeting of the Barriers. ACS Chem Neurosci. 2021;12(11):1835-1853. https://doi.org/10.1021/acschemneuro.1c00087
  48. Tedesco Triccas L, Maris A, Lamers I, et al. Do people with multiple sclerosis perceive upper limb improvements from robotic-mediated therapy? A mixed methods study. Mult Scler Relat Disord. 2022;68:104159. https://doi.org/10.1016/j.msard.2022.104159
  49. Sconza C, Negrini F, Di Matteo B, et al. Robot-Assisted Gait Training in Patients with Multiple Sclerosis: A Randomized Controlled Crossover Trial. Medicina (Kaunas). 2021;57(7):713.  https://doi.org/10.3390/medicina57070713
  50. Han R, Acosta JN, Shakeri Z, et al. Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review. Lancet Digit Health. 2024;6(5):e367-e373. https://doi.org/10.1016/S2589-7500(24)00047-5

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.