The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Levin O.S.

Russian Medical Academy of Continuous Professional Education

Zakharova M.N.

Research Center of Neurology

Shemiakina A.V.

Russian Medical Academy of Continuous Professional Education

Cognitive impairment in patients with multiple sclerosis

Authors:

Levin O.S., Zakharova M.N., Shemiakina A.V.

More about the authors

Read: 1153 times


To cite this article:

Levin OS, Zakharova MN, Shemiakina AV. Cognitive impairment in patients with multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(4‑2):67‑73. (In Russ.)
https://doi.org/10.17116/jnevro202512504267

Recommended articles:
Psoriasis in pregnant women. Russian Journal of Clinical Dermatology and Vene­reology. 2024;(5):517-524
New aspe­cts of psoriasis pathogenesis: meta­bolomic profiling in dermatology. Russian Journal of Clinical Dermatology and Vene­reology. 2024;(5):526-531
Tube­rculous otitis media in an adolescent. Clinical case. Russian Bulletin of Otorhinolaryngology. 2024;(5):63-66
Difficulties in life­time diagnosis of Creutzfeldt—Jakob disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):19-27
The role of immuno-inflammatory factors in the deve­lopment of nega­tive symptoms in schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):42-48

References:

  1. McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and Treatment of Multiple Sclerosis. JAMA. 2021;325(8):765-779.  https://doi.org/10.1001/jama.2020.26858
  2. Chitnis T. Role of puberty in multiple sclerosis risk and course. Clin Immunol. 2013;149(2):192-200.  https://doi.org/10.1016/j.clim.2013.03.014
  3. Kappos L, Wolinsky JS, Giovannoni G, et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol. 2020;77(9):1132-1140. https://doi.org/10.1001/jamaneurol.2020.1568
  4. Clemens L, Langdon D. How does cognition relate to employment in multiple sclerosis? A systematic review. Mult Scler Relat Disord. 2018;26:183-191.  https://doi.org/10.1016/j.msard.2018.09.018
  5. DeLuca J, Chiaravalloti ND, Sandroff BM. Treatment and management of cognitive dysfunction in patients with multiple sclerosis. Nat Rev Neurol. 2020;16(6):319-332.  https://doi.org/10.1038/s41582-020-0355-1
  6. Benedict RHB, Amato MP, DeLuca J, et al. Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. Lancet Neurol. 2020;19(10):860-871.  https://doi.org/10.1016/S1474-4422(20)30277-5
  7. Pardini M, Uccelli A, Grafman J, et al. Isolated cognitive relapses in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2014;85(9):1035-1037. https://doi.org/10.1136/jnnp-2013-307275
  8. Hynčicová E, Vyhnálek M, Kalina A, et al. Cognitive impairment and structural brain changes in patients with clinically isolated syndrome at high risk for multiple sclerosis. J Neurol. 2017;264(3):482-493.  https://doi.org/10.1007/s00415-016-8368-9
  9. Zipoli V, Goretti B, Hakiki B, et al. Cognitive impairment predicts conversion to multiple sclerosis in clinically isolated syndromes. Mult Scler. 2010;16(1):62-67.  https://doi.org/10.1177/1352458509350311
  10. Moccia M, Lanzillo R, Palladino R, et al. Cognitive impairment at diagnosis predicts 10-year multiple sclerosis progression. Mult Scler. 2016;22(5):659-667.  https://doi.org/10.1177/1352458515599075
  11. Cavaco S, Ferreira I, Moreira I, et al. Cognitive dysfunction and mortality in multiple sclerosis: Long-term retrospective review. Mult Scler. 2022;28(9):1382-1391. https://doi.org/10.1177/13524585211066598
  12. Ruano L, Portaccio E, Goretti B, et al. Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Mult Scler. 2017;23(9):1258-1267. https://doi.org/10.1177/1352458516674367
  13. Wybrecht D, Reuter F, Pariollaud F, et al. New brain lesions with no impact on physical disability can impact cognition in early multiple sclerosis: A ten-year longitudinal study. PLoS One. 2017;12(11):e0184650. https://doi.org/10.1371/journal.pone.0184650
  14. Ruet A, Deloire M, Hamel D, et al. Cognitive impairment, health-related quality of life and vocational status at early stages of multiple sclerosis: a 7-year longitudinal study. J Neurol. 2013;260(3):776-784.  https://doi.org/10.1007/s00415-012-6705-1
  15. Dorstyn DS, Roberts RM, Murphy G, et al. Employment and multiple sclerosis: A meta-analytic review of psychological correlates. J Health Psychol. 2019;24(1):38-51.  https://doi.org/10.1177/1359105317691587
  16. Oset M, Stasiolek M, Matysiak M. Cognitive Dysfunction in the Early Stages of Multiple Sclerosis-How Much and How Important? Curr Neurol Neurosci Rep. 2020;20(7):22.  https://doi.org/10.1007/s11910-020-01045-3
  17. Oreja-Guevara C, Ayuso Blanco T, Brieva Ruiz L, et al. Cognitive Dysfunctions and Assessments in Multiple Sclerosis. Front Neurol. 2019;10:581.  https://doi.org/10.3389/fneur.2019.00581
  18. Coll-Martinez C, Quintana E, Salavedra-Pont J, et al. Assessing the presence of oligoclonal IgM bands as a prognostic biomarker of cognitive decline in the early stages of multiple sclerosis. Brain Behav. 2021;11(12):e2405. https://doi.org/10.1002/brb3.2405
  19. McNicholas N, O’Connell K, Yap SM, et al. Cognitive dysfunction in early multiple sclerosis: a review. QJM. 2018;111(6):359-364.  https://doi.org/10.1093/qjmed/hcx070
  20. Portaccio E, De Meo E, Bellinvia A, et al. Cognitive Issues in Pediatric Multiple Sclerosis. Brain Sci. 2021;11(4):442.  https://doi.org/10.3390/brainsci11040442
  21. Portaccio E, Bellinvia A, Razzolini L, et al. Long-term Cognitive Outcomes and Socioprofessional Attainment in People With Multiple Sclerosis With Childhood Onset. Neurology. 2022;98(16):e1626-e1636. https://doi.org/10.1212/WNL.0000000000200115
  22. Jakimovski D, Weinstock-Guttman B, Roy S, et al. Cognitive Profiles of Aging in Multiple Sclerosis. Front Aging Neurosci. 2019;11:105.  https://doi.org/10.3389/fnagi.2019.00105
  23. Butler Pagnotti R, Hua LH, Miller JB. Cognition and disease characteristics in adult onset versus late onset multiple sclerosis. Mult Scler. 2022;28(6):933-941.  https://doi.org/10.1177/13524585211039112
  24. Branco M, Ruano L, Portaccio E, et al. Aging with multiple sclerosis: prevalence and profile of cognitive impairment [published correction appears in Neurol Sci. 2020 Jan;41(1):243]. Neurol Sci. 2019;40(8):1651-1657. https://doi.org/10.1007/s10072-019-03875-7
  25. Lin X, Zhang X, Liu Q, et al. Social cognition in multiple sclerosis and its subtypes: A meta-analysis. Mult Scler Relat Disord. 2021;52:102973. https://doi.org/10.1016/j.msard.2021.102973
  26. Battaglia S, Serio G, Scarpazza C, et al. Frozen in (e)motion: How reactive motor inhibition is influenced by the emotional content of stimuli in healthy and psychiatric populations. Behav Res Ther. 2021;146:103963. https://doi.org/10.1016/j.brat.2021.103963
  27. Radlak B, Cooper C, Summers F, et al. Multiple sclerosis, emotion perception and social functioning. J Neuropsychol. 2021;15(3):500-515.  https://doi.org/10.1111/jnp.12237
  28. Kalron A, Aloni R, Allali G. The relationship between depression, anxiety and cognition and its paradoxical impact on falls in multiple sclerosis patients. Mult Scler Relat Disord. 2018;25:167-172.  https://doi.org/10.1016/j.msard.2018.07.029
  29. Sumowski JF, Horng S, Brandstadter R, et al. Sleep disturbance and memory dysfunction in early multiple sclerosis. Ann Clin Transl Neurol. 2021;8(6):1172-1182. https://doi.org/10.1002/acn3.51262
  30. Di Filippo M, Portaccio E, Mancini A, et al. Multiple sclerosis and cognition: synaptic failure and network dysfunction. Nat Rev Neurosci. 2018;19(10):599-609.  https://doi.org/10.1038/s41583-018-0053-9
  31. Dineen RA, Vilisaar J, Hlinka J, et al. Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain. 2009;132(Pt 1):239-249.  https://doi.org/10.1093/brain/awn275
  32. DeLuca GC, Yates RL, Beale H, et al. Cognitive impairment in multiple sclerosis: clinical, radiologic and pathologic insights. Brain Pathol. 2015;25(1):79-98.  https://doi.org/10.1111/bpa.12220
  33. Eijlers AJC, van Geest Q, Dekker I, et al. Predicting cognitive decline in multiple sclerosis: a 5-year follow-up study. Brain. 2018;141(9):2605-2618. https://doi.org/10.1093/brain/awy202
  34. Klaver R, De Vries HE, Schenk GJ, et al. Grey matter damage in multiple sclerosis: a pathology perspective. Prion. 2013;7(1):66-75.  https://doi.org/10.4161/pri.23499
  35. Engl C, Tiemann L, Grahl S, et al. Cognitive impairment in early MS: contribution of white matter lesions, deep grey matter atrophy, and cortical atrophy. J Neurol. 2020;267(8):2307-2318. https://doi.org/10.1007/s00415-020-09841-0
  36. Eijlers AJC, Dekker I, Steenwijk MD, et al. Cortical atrophy accelerates as cognitive decline worsens in multiple sclerosis. Neurology. 2019;93(14):e1348-e1359. https://doi.org/10.1212/WNL.0000000000008198
  37. Minagar A, Barnett MH, Benedict RH, et al. The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology. 2013;80(2):210-219.  https://doi.org/10.1212/WNL.0b013e31827b910b
  38. Damjanovic D, Valsasina P, Rocca MA, et al. Hippocampal and Deep Gray Matter Nuclei Atrophy Is Relevant for Explaining Cognitive Impairment in MS: A Multicenter Study. Am J Neuroradiol. 2017;38(1):18-24.  https://doi.org/10.3174/ajnr.A4952
  39. Steenwijk MD, Geurts JJ, Daams M, et al. Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain. 2016;139(Pt 1):115-126.  https://doi.org/10.1093/brain/awv337
  40. Amato MP, Hakiki B, Goretti B, et al. Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology. 2012;78(5):309-314.  https://doi.org/10.1212/WNL.0b013e31824528c9
  41. Amin M, Ontaneda D. Thalamic Injury and Cognition in Multiple Sclerosis. Front Neurol. 2021;11:623914. https://doi.org/10.3389/fneur.2020.623914
  42. Di Filippo M, Mancini A, Bellingacci L, et al. Interleukin-17 affects synaptic plasticity and cognition in an experimental model of multiple sclerosis. Cell Rep. 2021;37(10):110094. https://doi.org/10.1016/j.celrep.2021.110094
  43. Komatsu H, Watanabe E, Fukuchi M. Psychiatric Neural Networks and Precision Therapeutics by Machine Learning. Biomedicines. 2021;9(4):403.  https://doi.org/10.3390/biomedicines9040403
  44. Gaetani L, Salvadori N, Lisetti V, et al. Cerebrospinal fluid neurofilament light chain tracks cognitive impairment in multiple sclerosis. J Neurol. 2019;266(9):2157-2163. https://doi.org/10.1007/s00415-019-09398-7
  45. Quintana E, Coll C, Salavedra-Pont J, et al. Cognitive impairment in early stages of multiple sclerosis is associated with high cerebrospinal fluid levels of chitinase 3-like 1 and neurofilament light chain. Eur J Neurol. 2018;25(9):1189-1191. https://doi.org/10.1111/ene.13687
  46. Kalinowska-Lyszczarz A, Losy J. The role of neurotrophins in multiple sclerosis-pathological and clinical implications. Int J Mol Sci. 2012;13(10):13713-13725. https://doi.org/10.3390/ijms131013713
  47. Maiworm M. The relevance of BDNF for neuroprotection and neuroplasticity in multiple sclerosis. Front Neurol. 2024;15:1385042. https://doi.org/10.3389/fneur.2024.1385042
  48. Cashion JM, Young KM, Sutherland BA. How does neurovascular unit dysfunction contribute to multiple sclerosis? Neurobiol Dis. 2023;178:106028. https://doi.org/10.1016/j.nbd.2023.106028
  49. Nishihara H, Perriot S, Gastfriend BD, et al. Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain. 2022 Dec 19;145(12):4334-4348. https://doi.org/10.1093/brain/awac019
  50. Brummer T, Muthuraman M, Steffen F, et al. Improved prediction of early cognitive impairment in multiple sclerosis combining blood and imaging biomarkers. Brain Commun. 2022;4(4):fcac153. https://doi.org/10.1093/braincomms/fcac153
  51. Yalachkov Y, Anschütz V, Jakob J, et al. Brain-derived neurotrophic factor and neurofilament light chain in cerebrospinal fluid are inversely correlated with cognition in Multiple Sclerosis at the time of diagnosis. Mult Scler Relat Disord. 2022;63:103822. https://doi.org/10.1016/j.msard.2022.103822
  52. Schoonheim MM, Broeders TAA, Geurts JJG. The network collapse in multiple sclerosis: An overview of novel concepts to address disease dynamics. Neuroimage Clin. 2022;35:103-108.  https://doi.org/10.1016/j.nicl.2022.103108
  53. Rao SM, Losinski G, Mourany L, et al. Processing speed test: Validation of a self-administered, iPad®-based tool for screening cognitive dysfunction in a clinic setting. Mult Scler. 2017;23(14):1929-1937. https://doi.org/10.1177/1352458516688955
  54. Akbar N, Honarmand K, Kou N, et al. Validity of a computerized version of the symbol digit modalities test in multiple sclerosis. J Neurol. 2011;258(3):373-379.  https://doi.org/10.1007/s00415-010-5760-8
  55. Kalb R, Beier M, Benedict RH, et al. Recommendations for cognitive screening and management in multiple sclerosis care. Mult Scler. 2018;24(13):1665-1680. https://doi.org/10.1177/1352458518803785
  56. Sandry J, Simonet DV, Brandstadter R, et al. The Symbol Digit Modalities Test (SDMT) is sensitive but non-specific in MS: Lexical access speed, memory, and information processing speed independently contribute to SDMT performance. Mult Scler Relat Disord. 2021;51:102950. https://doi.org/10.1016/j.msard.2021.102950
  57. Benedict RH, Cookfair D, Gavett R, et al. Validity of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). J Int Neuropsychol Soc. 2006;12(4):549-558.  https://doi.org/10.1017/s1355617706060723
  58. Rao SM, Leo GJ, Bernardin L, et al. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology. 1991;41(5):685-691.  https://doi.org/10.1212/wnl.41.5.685
  59. Langdon DW, Amato MP, Boringa J, et al. Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Mult Scler. 2012;18(6):891-898.  https://doi.org/10.1177/1352458511431076
  60. Honarmand K, Feinstein A. Validation of the Hospital Anxiety and Depression Scale for use with multiple sclerosis patients. Mult Scler. 2009;15(12):1518-1524. https://doi.org/10.1177/1352458509347150
  61. Rosti-Otajärvi E, Hämäläinen P, Wiksten A, et al. Validity and reliability of the Fatigue Severity Scale in Finnish multiple sclerosis patients. Brain Behav. 2017;7(7):e00743. https://doi.org/10.1002/brb3.743
  62. Beckmann H, Heesen C, Augustin M, et al. The 27-Item Multiple Sclerosis Quality of Life Questionnaire: A New Brief Measure Including Treatment Burden and Work Life. Int J MS Care. 2022;24(4):147-153.  https://doi.org/10.7224/1537-2073.2020-088
  63. O’Connor P, Goodman A, Kappos L, et al. Long-term safety and effectiveness of natalizumab redosing and treatment in the STRATA MS Study. Neurology. 2014;83(1):78-86.  https://doi.org/10.1212/WNL.0000000000000541
  64. Chen MH, Goverover Y, Genova HM, et al. Cognitive Efficacy of Pharmacologic Treatments in Multiple Sclerosis: A Systematic Review. CNS Drugs. 2020;34(6):599-628.  https://doi.org/10.1007/s40263-020-00734-4
  65. Roy S, Benedict RH, Drake AS, et al. Impact of Pharmacotherapy on Cognitive Dysfunction in Patients with Multiple Sclerosis. CNS Drugs. 2016;30(3):209-225.  https://doi.org/10.1007/s40263-016-0319-6
  66. Landmeyer NC, Bürkner PC, Wiendl H, et al. Disease-modifying treatments and cognition in relapsing-remitting multiple sclerosis: A meta-analysis. Neurology. 2020;94(22):e2373-e2383. https://doi.org/10.1212/WNL.0000000000009522
  67. Patti F, Morra VB, Amato MP, et al. Subcutaneous interferon β-1a may protect against cognitive impairment in patients with relapsing-remitting multiple sclerosis: 5-year follow-up of the COGIMUS study. PLoS One. 2013;8(8):e74111. https://doi.org/10.1371/journal.pone.0074111
  68. Mattioli F, Stampatori C, Bellomi F, et al. Natalizumab Significantly Improves Cognitive Impairment over Three Years in MS: Pattern of Disability Progression and Preliminary MRI Findings. PLoS One. 2015;10(7):e0131803. https://doi.org/10.1371/journal.pone.0131803
  69. Planche V, Gibelin M, Cregut D, et al. Cognitive impairment in a population-based study of patients with multiple sclerosis: differences between late relapsing-remitting, secondary progressive and primary progressive multiple sclerosis. Eur J Neurol. 2016;23(2):282-289.  https://doi.org/10.1111/ene.12715
  70. Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2017;376(3):221-234.  https://doi.org/10.1056/NEJMoa1601277
  71. Riepl E, Pfeuffer S, Ruck T, et al. Alemtuzumab Improves Cognitive Processing Speed in Active Multiple Sclerosis-A Longitudinal Observational Study. Front Neurol. 2018;8:730.  https://doi.org/10.3389/fneur.2017.00730
  72. DeLuca J, Schippling S, Montalban X, et al. Effect of Ozanimod on Symbol Digit Modalities Test Performance in Relapsing MS. Mult Scler Relat Disord. 2021;48:102673. https://doi.org/10.1016/j.msard.2020.102673
  73. Miller E, Morel A, Redlicka J, et al. Pharmacological and Non-pharmacological Therapies of Cognitive Impairment in Multiple Sclerosis. Curr Neuropharmacol. 2018;16(4):475-483.  https://doi.org/10.2174/1570159X15666171109132650
  74. O’Grady KP, Dula AN, Lyttle BD, et al. Glutamate-sensitive imaging and evaluation of cognitive impairment in multiple sclerosis. Mult Scler. 2019;25(12):1580-1592. https://doi.org/10.1177/1352458518799583
  75. Peyro Saint Paul L, Creveuil C, Heinzlef O, et al. Efficacy and safety profile of memantine in patients with cognitive impairment in multiple sclerosis: A randomized, placebo-controlled study. J Neurol Sci. 2016;363:69-76.  https://doi.org/10.1016/j.jns.2016.02.012
  76. Turalde CWR, Espiritu AI, Anlacan VMM. Memantine for Multiple Sclerosis: A Systematic Review and Meta-Analysis of Randomized Trials. Front Neurol. 2021;11:574748. https://doi.org/10.3389/fneur.2020.574748
  77. Gavrilova SI, Alvarez A. Cerebrolysin in the therapy of mild cognitive impairment and dementia due to Alzheimer’s disease: 30 years of clinical use. Med Res Rev. 2021;41(5):2775-2803.
  78. Gauthier S, Proaño JV, Jia J, et al. Cerebrolysin in mild-to-moderate Alzheimer’s disease: a meta-analysis of randomized controlled clinical trials. Dement Geriatr Cogn Disord. 2015;39(5-6):332-347. 
  79. Khabirov FA, Khaybullin TI, Granatov EV, et al. Effect of cerebrolysin on remyelination processes in multiple sclerosis patients in stage of relapse regression. S.S. Korsakov Journal of Neurology and Psychiatry. 2016;116(12):48-53. (In Russ.). https://doi.org/10.17116/jnevro201611612148-53
  80. Boiko AN, Batysheva TT, Mel’nikova MV, et al. Assessment of the size of the thalamus as a method for the evaluation of the activity of neurodegenerative process after the treatment with cerebrolisin in young patients with multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2013;113(2-2):104-110. (In Russ.).
  81. Teng H, Li C, Zhang Y, et al. Therapeutic effect of Cerebrolysin on reducing impaired cerebral endothelial cell permeability. Neuroreport. 2021;32(5):359-366.  https://doi.org/10.1097/WNR.0000000000001598
  82. Kalinin MN, Khasanova DR. Cerebrolysin as an early add-on to reperfusion therapy: heterogeneous treatment effect analysis in ischemic stroke patients with varying risk of hemorrhagic transformation. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(3-2):55-66. (In Russ.). https://doi.org/10.17116/jnevro202412403255
  83. Chiaravalloti ND, Moore NB, Nikelshpur OM, et al. An RCT to treat learning impairment in multiple sclerosis: The MEMREHAB trial. Neurology. 2013;81(24):2066-2072. https://doi.org/10.1212/01.wnl.0000437295.97946.a8
  84. Lampit A, Heine J, Finke C, et al. Computerized Cognitive Training in Multiple Sclerosis: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair. 2019;33(9):695-706.  https://doi.org/10.1177/1545968319860490
  85. Naeeni Davarani M, Arian Darestani A, Hassani-Abharian P, et al. RehaCom rehabilitation training improves a wide-range of cognitive functions in multiple sclerosis patients. Appl Neuropsychol Adult. 2022;29(2):262-272.  https://doi.org/10.1080/23279095.2020.1747070

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.