The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Epishina I.V.

Sechenov First Moscow State Medical University (Sechenov University)

Budanova E.V.

Sechenov First Moscow State Medical University (Sechenov University)

A role of human microbiota in the development of neurodegenerative diseases

Authors:

Epishina I.V., Budanova E.V.

More about the authors

Read: 5682 times


To cite this article:

Epishina IV, Budanova EV. A role of human microbiota in the development of neurodegenerative diseases. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(10):57‑65. (In Russ.)
https://doi.org/10.17116/jnevro202212210157

Recommended articles:
Diagnosis and treatment approaches for sialorrhea in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(10):29-34
The gut microbiota in bipo­lar diso­rder. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):28-33
Neurochemical mechanisms of tremor in Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):64-72
Cognitive impairment in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):81-90
Bladder dysfunction in patients with stages I—III of Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):91-99
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121
Gut microbiota: role in human health and pote­ntial for personalized medi­cine. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):81-88

References:

  1. Burger-van Paassen N, Vincent A, Puiman P, et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochemical Journal. 2009;420(2):211-219.  https://doi.org/10.1042/bj20082222
  2. Nell S, Suerbaum S, Josenhans C. The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nature Reviews Microbiology. 2010;8(8):564-577.  https://doi.org/10.1038/nrmicro2403
  3. Patrascu O, Béguet-Crespel F, Marinelli L, et al. A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Scientific Reports. 2017;7:40248. https://doi.org/10.1038/srep40248
  4. Ellis J, Karl J, Oliverio A, et al. Dietary vitamin K is remodeled by gut microbiota and influences community composition. Gut Microbes. 2021;13(1):1-16.  https://doi.org/10.1080/19490976.2021.1887721
  5. LeBlanc J, Chain F, Martín R, et al. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial Cell Factories. 2017;16(1):79.  https://doi.org/10.1186/s12934-017-0691-z
  6. Ressler K, Nemeroff C. Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety. 2000;12(S1):2-19. https://doi.org/10.1002/1520-6394(2000)12:1+<2::AID-DA2>3.0.CO;2-4 "> 3.0.CO;2-4" target="_blank">https://doi.org/10.1002/1520-6394(2000)12:1+<2::AID-DA2>3.0.CO;2-4
  7. Nutt DJ. Neurobiological mechanisms in generalized anxiety disorder. Journal of Clinical Psychiatry. 2001;62 Suppl 11:22-27. 
  8. Long-Smith C, O’Riordan K, Clarke G, et al. Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology. 2020;60:477-502.  https://doi.org/10.1146/annurev-pharmtox-010919-023628
  9. Grenham S, Clarke G, Cryan J, Dinan T. Brain-gut-microbe communication in health and disease. Frontiers in Physiology. 2011;2:94.  https://doi.org/10.3389/fphys.2011.00094
  10. Cenit M, Sanz Y, Codoñer-Franch P. Influence of gut microbiota on neuropsychiatric disorders. World Journal of Gastroenterology. 2017;23(30):5486. https://doi.org/10.3748/wjg.v23.i30.5486
  11. Quigley E. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Current Neurology and Neuroscience Reports. 2017;17(12):94.  https://doi.org/10.1007/s11910-017-0802-6
  12. Rice DP, Fillit HM, Max W, et al. Prevalence, costs, and treatment of Alzheimer’s disease and related dementia: a managed care perspective. The American Journal of Managed Care. 2001;7(8):809-818. 
  13. Brookmeyer R, Johnson E, Ziegler‐Graham K, Arrighi H. Forecasting the global burden of Alzheimer’s disease. Alzheimer’s & Dementia. 2007;3(3):186-191.  https://doi.org/10.1016/j.jalz.2007.04.381
  14. Alifirova VM, Zhukova NG, Zhukova IA, et al. A role of the gastrointestinal tract microbiota in the pathogenesis of Parkinson’s disease. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2016;116(11):174-179. (In Russ.). https://doi.org/10.17116/jnevro2016116111174-179
  15. Bauer K, Huus K, Finlay B. Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis. Cellular Microbiology. 2016;18(5):632-644.  https://doi.org/10.1111/cmi.12585
  16. Cryan J, O’Mahony S. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterology & Motility. 2011;23(3):187-192.  https://doi.org/10.1111/j.1365-2982.2010.01664.x
  17. Peralta-Marzal L, Prince N, Bajic D, et al. The Impact of Gut Microbiota-Derived Metabolites in Autism Spectrum Disorders. International Journal of Molecular Sciences. 2021;22(18):10052. https://doi.org/10.3390/ijms221810052
  18. Zhu X, Li B, Lou P, et al. The Relationship Between the Gut Microbiome and Neurodegenerative Diseases. Neuroscience Bulletin. 2021;37(10):1510-1522. https://doi.org/10.1007/s12264-021-00730-8
  19. Mayer E. Gut feelings: the emerging biology of gut–brain communication. Nature Reviews Neuroscience. 2011;12(8):453-466.  https://doi.org/10.1038/nrn3071
  20. Bonaz B, Bazin T, Pellissier S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Frontiers in Neuroscience. 2018;12:49.  https://doi.org/10.3389/fnins.2018.00049
  21. Haney M, Ericsson A, Lever T. Effects of Intraoperative Vagal Nerve Stimulation on the Gastrointestinal Microbiome in a Mouse Model of Amyotrophic Lateral Sclerosis. Comparative Medicine. 2018;68(6):452-460.  https://doi.org/10.30802/aalas-cm-18-000039
  22. Banks W, Kastin A, Broadwell R. Passage of Cytokines across the Blood-Brain Barrier. Neuroimmunomodulation. 1995;2(4):241-248.  https://doi.org/10.1159/000097202
  23. Tillisch K. The effects of gut microbiota on CNS function in humans. Gut Microbes. 2014;5(3):404-410.  https://doi.org/10.4161/gmic.29232
  24. Ulluwishewa D, Anderson R, McNabb W, et al. Regulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components. Journal of Nutrition. 2011;141(5):769-776.  https://doi.org/10.3945/jn.110.135657
  25. Bailey M, Dowd S, Galley J, et al. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain, Behavior, and Immunity. 2011;25(3):397-407.  https://doi.org/10.1016/j.bbi.2010.10.023
  26. Galley J, Nelson M, Yu Z, et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiology. 2014;14(1):189.  https://doi.org/10.1186/1471-2180-14-189
  27. Farzi A, Fröhlich E, Holzer P. Gut Microbiota and the Neuroendocrine System. Neurotherapeutics. 2018;15(1):5-22.  https://doi.org/10.1007/s13311-017-0600-5
  28. Kelly J, Kennedy P, Cryan J, et al. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Frontiers in Cellular Neuroscience. 2015;9:392.  https://doi.org/10.3389/fncel.2015.00392
  29. Qin H, Cheng C, Tang X, Bian Z. Impact of psychological stress on irritable bowel syndrome. World Journal of Gastroenterology. 2014;20(39):14126-14131. https://doi.org/10.3748/wjg.v20.i39.14126
  30. Konturek PC, Brzozowski T, Konturek SJ. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. Journal of physiology and pharmacology. 2011;62(6):591-599. 
  31. Dantzer R. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiological Reviews. 2018;98(1):477-504.  https://doi.org/10.1152/physrev.00039.2016
  32. Ceppa F, Izzo L, Sardelli L, et al. Gut-Microbiota Interaction in Neurodegenerative Disorders and Current Engineered Tools for Its Modeling. Frontiers in Cellular and Infection Microbiology. 2020;10:297.  https://doi.org/10.3389/fcimb.2020.00297
  33. Silva Y, Bernardi A, Frozza R. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology (Lausanne). 2020;11:25.  https://doi.org/10.3389/fendo.2020.00025
  34. Ho L, Ono K, Tsuji M, et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Review of Neurotherapeutics. 2017;18(1):83-90.  https://doi.org/10.1080/14737175.2018.1400909
  35. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nature Reviews Gastroenterology & Hepatology. 2019;16(8):461-478.  https://doi.org/10.1038/s41575-019-0157-3
  36. Nankova B, Agarwal R, MacFabe D, La Gamma E. Enteric Bacterial Metabolites Propionic and Butyric Acid Modulate Gene Expression, Including CREB-Dependent Catecholaminergic Neurotransmission, in PC12 Cells — Possible Relevance to Autism Spectrum Disorders. PLoS One. 2014;9(8):e103740. https://doi.org/10.1371/journal.pone.0103740
  37. Ma F, Li Q, Zhou X, et al. Effects of folic acid supplementation on cognitive function and Aβ-related biomarkers in mild cognitive impairment: a randomized controlled trial. European Journal of Clinical Nutrition. 2017;58(1):345-356.  https://doi.org/10.1007/s00394-017-1598-5
  38. Oikonomidi A, Lewczuk P, Kornhuber J, et al. Homocysteine metabolism is associated with cerebrospinal fluid levels of soluble amyloid precursor protein and amyloid beta. Journal of Neurochemistry. 2016;139(2):324-332.  https://doi.org/10.1111/jnc.13766
  39. Oh C, Namkung J, Go Y, et al. Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nature Communications. 2015;6(1):6794. https://doi.org/10.1038/ncomms7794
  40. Maiti P, Manna J, Dunbar G. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Translational Neurodegeneration. 2017;6:28.  https://doi.org/10.1186/s40035-017-0099-z
  41. Schousboe A, Waagepetersen H. GABA: Homeostatic and pharmacological aspects. Progress in Brain Research. 2007;160:9-19.  https://doi.org/10.1016/s0079-6123(06)60002-2
  42. Yunes R, Poluektova E, Dyachkova M, et al. GABA production and structure of gadB / gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe. 2016;42:197-204.  https://doi.org/10.1016/j.anaerobe.2016.10.011
  43. Cani P, Everard A, Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Current Opinion in Pharmacology. 2013;13(6):935-940.  https://doi.org/10.1016/j.coph.2013.09.008
  44. Bauer P, Hamr S, Duca F. Regulation of energy balance by a gut–brain axis and involvement of the gut microbiota. Cellular and Molecular Life Sciences. 2015;73(4):737-755.  https://doi.org/10.1007/s00018-015-2083-z
  45. Anderberg R, Richard J, Hansson C, et al. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology. 2016;65:54-66.  https://doi.org/10.1016/j.psyneuen.2015.11.021
  46. Li L, Zhang Z, Holscher C, et al. (Val8) glucagon-like peptide-1 prevents tau hyperphosphorylation, impairment of spatial learning and ultra-structural cellular damage induced by streptozotocin in rat brains. European Journal of Pharmacology. 2012;674(2-3):280-286.  https://doi.org/10.1016/j.ejphar.2011.11.005
  47. Dumitrescu L, Popescu-Olaru I, Cozma L, et al. Oxidative Stress and the Microbiota-Gut-Brain Axis. Oxidative Medicine and Cellular Longevity. 2018;2018:2406594. https://doi.org/10.1155/2018/2406594
  48. Butterfield D, Boyd-Kimball D. Oxidative Stress, Amyloid-β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer’s Disease. Journal of Alzheimer’s Disease. 2018;62(3):1345-1367. https://doi.org/10.3233/jad-170543
  49. Grimm A, Eckert A. Brain aging and neurodegeneration: from a mitochondrial point of view. Journal of Neurochemistry. 2017;143(4):418-431.  https://doi.org/10.1111/jnc.14037
  50. Luca M, Di Mauro M, Di Mauro M, et al. Gut Microbiota in Alzheimer’s Disease, Depression, and Type 2 Diabetes Mellitus: The Role of Oxidative Stress. Oxidative Medicine and Cellular Longevity. 2019;2019:1-10.  https://doi.org/10.1155/2019/4730539
  51. Oleskin AB, Shenderov BA. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microbial Ecology in Health & Disease. 2016;27:30971. (In Russ.). https://doi.org/10.3402/mehd.v27.30971
  52. Luca M, Luca A, Calandra C. The Role of Oxidative Damage in the Pathogenesis and Progression of Alzheimer’s Disease and Vascular Dementia. Oxidative Stress and the Microbiota-Gut-Brain Axis.2015;2015(Article ID 504678):1-8.  https://doi.org/10.1155/2015/504678
  53. Tse J. Gut Microbiota, Nitric Oxide, and Microglia as Prerequisites for Neurodegenerative Disorders. ACS Chemical Neuroscience. 2017;8(7):1438-1447. https://doi.org/10.1021/acschemneuro.7b00176
  54. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biology. 2015;4:180-183.  https://doi.org/10.1016/j.redox.2015.01.002
  55. Kim G, Kim J, Rhie S, Yoon S. The Role of Oxidative Stress in Neurodegenerative Diseases. Experimental Neurobiology. 2015;24(4):325-340.  https://doi.org/10.5607/en.2015.24.4.325
  56. Patel M. Targeting Oxidative Stress in Central Nervous System Disorders. Trends in Pharmacological Sciences 2016;37(9):768-778.  https://doi.org/10.1016/j.tips.2016.06.007
  57. Maes M, Gałecki P, Talarowska M, et al. Mechanisms Underlying Neurocognitive Dysfunctions in Recurrent Major Depression. Medical Science Monitor. 2015;21:1535-1547. https://doi.org/10.12659/msm.893176
  58. Grimm A, Mensah-Nyagan A, Eckert A. Alzheimer, mitochondria and gender. Neuroscience & Biobehavioral Reviews. 2016;67:89-101.  https://doi.org/10.1016/j.neubiorev.2016.04.012
  59. Burns A, Iliffe S. Alzheimer’s disease. BMJ. 2009;338:b158. https://doi.org/10.1136/bmj.b158
  60. Jouanne M, Rault S, Voisin-Chiret A. Tau protein aggregation in Alzheimer’s disease: An attractive target for the development of novel therapeutic agents. European Journal of Medicinal Chemistry. 2017;139:153-167.  https://doi.org/10.1016/j.ejmech.2017.07.070
  61. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends in Pharmacological Sciences. 1991;12(10):383-388.  https://doi.org/10.1016/0165-6147(91)90609-v
  62. Ahmadian N, Hejazi S, Mahmoudi J, et al. Tau Pathology of Alzheimer Disease: Possible Role of Sleep Deprivation. Basic and Clinical Neuroscience Journal. 2018;9(5):307-316.  https://doi.org/10.32598/bcn.9.5.307
  63. Iqbal K, del C. Alonso A, Chen S, et al. Tau pathology in Alzheimer disease and other tauopathies. Biochimica et Biophysica Acta (BBA) — Molecular Basis of Disease. 2005;1739(2-3):198-210.  https://doi.org/10.1016/j.bbadis.2004.09.008
  64. Kesika P, Suganthy N, Sivamaruthi B, Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Science. 2021;264:118627. https://doi.org/10.1016/j.lfs.2020.118627
  65. Jiang C, Li G, Huang P, Liu Z, Zhao B. The Gut Microbiota and Alzheimer’s Disease. Journal of Alzheimer’s Disease. 2017;58(1):1-15.  https://doi.org/10.3233/jad-161141
  66. Friedland R. Mechanisms of Molecular Mimicry Involving the Microbiota in Neurodegeneration. Journal of Alzheimer’s Disease. 2015;45(2):349-362.  https://doi.org/10.3233/jad-142841
  67. Friedland R, Chapman M. The role of microbial amyloid in neurodegeneration. PLoS Pathogens. 2017;13(12):e1006654. https://doi.org/10.1371/journal.ppat.1006654
  68. Chen S, Stribinskis V, Rane M, et al. Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans. Scientific Reports. 2016;6:34477. https://doi.org/10.1038/srep34477
  69. Whitfield C, Trent M. Biosynthesis and Export of Bacterial Lipopolysaccharides. Annual Review of Biochemistry. 2014;83:99-128.  https://doi.org/10.1146/annurev-biochem-060713-035600
  70. Hauss-Wegrzyniak B, Vraniak P, Wenk G. LPS-induced neuroinflammatory effects do not recover with time. Neuroreport. 2000;11(8):1759-1763. https://doi.org/10.1097/00001756-200006050-00032
  71. Kahn M, Kranjac D, Alonzo C, et al. Prolonged elevation in hippocampal Aβ and cognitive deficits following repeated endotoxin exposure in the mouse. Behavioural Brain Research. 2012;229(1):176-184.  https://doi.org/10.1016/j.bbr.2012.01.010
  72. Asti A, Gioglio L. Can a Bacterial Endotoxin be a Key Factor in the Kinetics of Amyloid Fibril Formation? Journal of Alzheimer’s Disease. 2014;39(1):169-179.  https://doi.org/10.3233/jad-131394
  73. Zhao Y, Jaber V, Lukiw W. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer’s Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus. Frontiers in Cellular and Infection Microbiology. 2017;7:318.  https://doi.org/10.3389/fcimb.2017.00318
  74. Zhao Y, Cong L, Jaber V, et al. Microbiome-Derived Lipopolysaccharide Enriched in the Perinuclear Region of Alzheimer’s Disease Brain. Frontiers in Immunology. 2017;8:1064. https://doi.org/10.3389/fimmu.2017.01064
  75. Zhan X, Stamova B, Jin L, et al. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology. 2016;87(22):2324-2332. https://doi.org/10.1212/wnl.0000000000003391
  76. Zhang R, Miller R, Gascon R, et al. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). Journal of Neuroimmunology. 2009;206(1-2):121-124.  https://doi.org/10.1016/j.jneuroim.2008.09.017
  77. Lukiw W. Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer’s Disease. Frontiers in Microbiology. 2016;7:1544. https://doi.org/10.3389/fmicb.2016.01544
  78. Zhao Y, Dua P, Lukiw W. Microbial Sources of Amyloid and Relevance to Amyloidogenesis and Alzheimer’s Disease (AD). Journal of Alzheimer’s Disease & Parkinsonism. 2015;5(1):177.  https://doi.org/10.4172/2161-0460.1000177
  79. Fassbender K, Walter S, Kühl S, et al. The LPS receptor (CD14) links innate immunity with Alzheimer’s disease. The FASEB Journal. 2004;18(1):203-205.  https://doi:10.1096/fj.03-0364fje
  80. Elbaz A, Carcaillon L, Kab S, et al. Epidemiology of Parkinson’s disease. Revue neurologique (Paris). 2016;172(1):14-26.  https://doi.org/10.1016/j.neurol.2015.09.012
  81. Dorsey E, Elbaz A, Nichols E, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology. 2018;17(11):939-953.  https://doi.org/10.1016/s1474-4422(18)30295-3
  82. Shulman J, De Jager P, Feany M. Parkinson’s Disease: Genetics and Pathogenesis. Annual Review of Pathology: Mechanisms of Disease. 2011;6(1):193-222.  https://doi.org/10.1146/annurev-pathol-011110-130242
  83. Cersosimo M, Raina G, Pecci C, et al. Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. Journal of Neurology. 2013;260(5):1332-1338. https://doi.org/10.1007/s00415-012-6801-2
  84. Goldstein D, Sewell L, Sharabi Y. Autonomic dysfunction in PD: A window to early detection? Journal of the Neurological Sciences. 2011;310(1-2):118-122.  https://doi.org/10.1016/j.jns.2011.04.011
  85. Pfeiffer R. Gastrointestinal dysfunction in Parkinson’s disease. Parkinsonism Relat Disord. 2011;17(1):10-15.  https://doi.org/10.1016/j.parkreldis.2010.08.003
  86. Abeliovich A, Gitler A. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature. 2016;539(7628):207-216.  https://doi.org/10.1038/nature20414
  87. Braak H, Tredici K, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging. 2003;24(2):197-211.  https://doi.org/10.1016/s0197-4580(02)00065-9
  88. Braak H, de Vos R, Bohl J, et al. Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neuroscience Letters. 2006;396(1):67-72.  https://doi.org/10.1016/j.neulet.2005.11.012
  89. Hawkes C, Del Tredici K, Braak H. Parkinson’s disease: a dual-hit hypothesis. Neuropathology and Applied Neurobiology. 2007;33(6):599-614.  https://doi.org/10.1111/j.1365-2990.2007.00874.x
  90. Béraud D, Maguire-Zeiss K. Misfolded α-synuclein and toll-like receptors: therapeutic targets for Parkinson’s disease. Parkinsonism & Related Disorders. 2012;18:S17-S20.  https://doi.org/10.1016/s1353-8020(11)70008-6
  91. Block M, Zecca L, Hong J. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews Neuroscience. 2007;8(1):57-69.  https://doi.org/10.1038/nrn2038
  92. Trudler D, Farfara D, Frenkel D. Toll-Like Receptors Expression and Signaling in Glia Cells in Neuro-Amyloidogenic Diseases: Towards Future Therapeutic Application. Mediators of Inflammation. 2010;2010:497987. https://doi.org/10.1155/2010/497987
  93. Akbari E, Asemi Z, Daneshvar Kakhaki R, et al. Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Double-Blind and Controlled Trial. Frontiers Research Foundation. 2016;8:256.  https://doi.org/10.3389/fnagi.2016.00256

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.