The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Voronina N.A.

Institute of General Pathology and Pathophysiology

Kapitsa I.G.

Federal Research Center For Innovator And Emerging Biomedical And Pharmaceutical Technologies

Kucheryanu V.G.

Institute of General Pathology and Pathophysiology

Goloborshchova V.V.

Institute of General Pathology and Pathophysiology

Voronina T.A.

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies

Electric activity of the brain at early and late clinical stages of experimental modeling of Parkinson’s disease, an impact of hemantane

Authors:

Voronina N.A., Kapitsa I.G., Kucheryanu V.G., Goloborshchova V.V., Voronina T.A.

More about the authors

Read: 1274 times


To cite this article:

Voronina NA, Kapitsa IG, Kucheryanu VG, Goloborshchova VV, Voronina TA. Electric activity of the brain at early and late clinical stages of experimental modeling of Parkinson’s disease, an impact of hemantane. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(9):129‑134. (In Russ.)
https://doi.org/10.17116/jnevro2024124091129

Recommended articles:
Diagnosis and treatment approaches for sialorrhea in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(10):29-34
Neurochemical mechanisms of tremor in Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):64-72
Cognitive impairment in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):81-90
Bladder dysfunction in patients with stages I—III of Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):91-99
A portrait of a doctor with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):160-164
Pathomorphosis of the Parkinson’s disease against the background of DBS STN. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(2):21-27

References:

  1. Costa HN, Esteves AR, Empadinhas N, et al. Parkinson’s Disease: A Multisystem Disorder. Neurosci Bull. 2023;39(1):113-124.  https://doi.org/10.1007/s12264-022-00934-6
  2. Alvarez D, Hornero R, Marcos J, et al. Spectral analysis of electroencephalogram and oximetric signals in obstructive sleep apnea diagnosis. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:400-403.  https://doi.org/10.1109/IEMBS.2009.5334905
  3. Stvolinsky SL, Kukley ML, Dobrota D, et al. Carnosine: an endogenous neuroprotector in the ischemic brain. Cell Mol Neurobiol. 1999;19(1):45-56.  https://doi.org/10.1023/a:1006960407008
  4. Neufeld MY, Inzelberg R, Korczyn AD. EEG in demented and non-demented parkinsonian patients. Acta Neurol Scand. 1988;78(1):1-5.  https://doi.org/10.1111/j.1600-0404.1988.tb03609.x
  5. Ayele BA, Tesfaye H, Wuhib MZ, et al. Factors Associated with EEG Slowing in Individuals with Parkinson’s Disease. Ethiop J Health Sci. 2022;32(1):73-80. 
  6. Stoffers D, Bosboom JLW, Deijen JB, et al. Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s disease without dementia. Brain. 2007;130(7):1847-1860. https://doi.org/10.1093/brain/awm034
  7. Nerobkova LN, Voronina TA, Katunina EA, et al. Features of the effects of amantadine on the spatial organization of biopotentials of the brain of patients with parkinsonism. Psikhofarmakologiya i biologicheskayanarkologiya. 2002;2(3):429. (In Russ.).
  8. Arakelyan RK, Nerobkova LN, Katunina EA, et al. Features of the functional activity of the brain in patients with Parkinson’s disease during treatment with amantadine sulfate. S.S. Korsakov Journal of Neurology and Psychiatry. 2005;105(4):17-21. (In Russ.).
  9. Waninger S, Berka C, Stevanovic KM, et al. Neurophysiological Biomarkers of Parkinson’s Disease. J Parkinsons Dis. 2020;10(2):471-480.  https://doi.org/10.3233/JPD-191844
  10. Weinberger M, Mahant N, Hutchison WD, et al. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol. 2006;96(6):3248-3256. https://doi.org/10.1152/jn.00697.2006
  11. Nerobkova LN, Val’dman EA, Voronina TA, et al. The effect of a new derivative of aminoadamantan A 7 on the manifestations of parkinsonian syndrome caused by systemic administration of the neurotoxin MPTP Eksperimental’naya i klinicheskayafarmakologiya. 2000;3:3. (In Russ.).
  12. Devergnas A, Pittard D, Bliwise D, et al. Relationship between oscillatory activity in the cortico-basal ganglia network and parkinsonism in MPTP-treated monkeys. Neurobiol Dis. 2014;68:156-166.  https://doi.org/10.1016/j.nbd.2014.04.004
  13. Voronina NA, Kucheryanu VG, Kapitsa IG, Voronina TA. Effects of adamantane derivatives on behavioral activity of mice with different stages of experimental parkinsonian syndrome. Patogenez [Pathogenesis]. 2019;17(4):57-62. (In Russ.). https://doi.org/10.25557/2310-0435.2019.04.57-62
  14. Val’dman EA, Voronina TA, Aksenova LN, et al. The effect of the new antiparkinsonian drug Hemantane on monoamine oxidase activity. Eksperimental’naya i klinicheskaya farmakologiya. 2003;66:5:3-5. (In Russ.).
  15. Voronina TA, Raevskii KS, Kudrin VS, et al. The effect of a new potential antiparkinsonian agent himantan on the content of monoamines and their metabolites in the rat striatum. Eksperimental’naya i klinicheskaya farmakologiya. 2001;6:13-16. (In Russ.).
  16. Ivanova EA, Kapitsa IG, Zolotov NN, et al. Effects of Hemantane upon the level of lipid peroxidation in brain in experimental parkinsonian syndrome. Farmakokinetika I farmakodinamika. [Pharmacokinetics and Pharmacodynamics]. 2016;79(3):9-12. (In Russ.).
  17. Voronina NA, Kucheryanu VG, Vetrile LA, et al. The effect of hemantane on the level of pro-inflammatory cytokines in the nigrocaudate complex of the brain of mice with experimental parkinsonism. Patogenez [Pathogenesis]. 2021;19(2):45-49. (In Russ.). https://doi.org/10.25557/2310-0435.2021.02.45-49
  18. Voronina NA, Lisina OYu, Krasilnikova IA, et al. Influence of Hemantane on changes in Ca2+ and Na+ caused by activation of NMDA channels in cultured rat brain neurons. Neurochemical Journal. 2021;(1):8-17.  https://doi.org/10.1134/S1819712421010165
  19. Ugrumov MV, Khaindrava VG, Kozina EA, et al. Modeling of presymptomatic and symptomatic stages of parkinsonism in mice. Neuroscience. 2011;181:175-188.  https://doi.org/10.1016/j.neuroscience.2011.03.007
  20. Khaindrava VG, Kozina EA, Kucheryanu VG, et al. Modeling of preclinical and early clinical stages of Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2010;110(7):41-47. (In Russ.).
  21. Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. 2nd ed. Publisher, Academic press; 2001;264. 
  22. Mitrofanov AA. Komp’yuternaya sistema analiza i topograficheskogo kartirovaniy aelektricheskoi aktivnosti mozga s neirometricheskim bankom EEG-dannykh «Brainsys». M.: Nauchno-meditsinskaya firma «Statokin»; 2007;72. (In Russ.).
  23. Buzsáki G, Buhl DL, Harris KD, et al. Hippocampal network patterns of activity in the mouse. Neuroscience. 2003;116(1):201-211.  https://doi.org/10.1016/s0306-4522(02)00669-3
  24. Singh A. Oscillatory activity in the cortico-basal ganglia-thalamic neural circuits in Parkinson’s disease. Eur J Neurosci. 2018;48(8):2869-2878. https://doi.org/10.1111/ejn.13853
  25. Soikkeli R, Partanen J, Soininen H, et al. Slowing of EEG in Parkinson’s disease. Electroencephalogr ClinNeurophysiol. 1991;79(3):159-165.  https://doi.org/10.1016/0013-4694(91)90134-p
  26. Chen H, Lei H, Xu Q. Neuronal activity pattern defects in the striatum in awake mouse model of Parkinson’s disease. Behav Brain Res. 2018;341:135-145.  https://doi.org/10.1016/j.bbr.2017.12.018
  27. Hutchison WD, Dostrovsky JO, Walters JR, et al. Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J Neurosci. 2004;24(42):9240-9243. https://doi.org/10.1523/JNEUROSCI.3366-04.2004
  28. He X, Zhang Y, Chen J, et al. The patterns of EEG changes in early-onset Parkinson’s disease patients. Int J Neurosci. 2017;127(11):1028-1035. https://doi.org/10.1080/00207454.2017.1304393
  29. Kapitsa IG, Kokshenev II, Nerobkova LN, et al. The effect of himantan on the bioelectric activity of the brain of mice with MPTP — induced Parkinsonian syndrome. Eksperimental’naya i klinicheskaya farmakologiya. 2013;4:3-6. (In Russ.).
  30. Kapitsa IG, Nerobkova LN, Voronina TA. EEG correlates of an early stage of a Parkinson illness in experiment on mice of the strain C57BL/6. Biomeditsina. 2014;1(1):54-60. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.