The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Martynov M.U.

Pirogov Russian National Research Medical University;
Federal Center of Brain Research and Neurotechnology of the Federal Medical Biological Agency

Bogolepova A.N.

Pirogov Russian National Research Medical University;
Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency

Yasamanova A.N.

Pirogov Russian National Research Medical University

Endothelial dysfunction in COVID- 19 and cognitive impairment

Authors:

Martynov M.U., Bogolepova A.N., Yasamanova A.N.

More about the authors

Read: 12102 times


To cite this article:

Martynov MU, Bogolepova AN, Yasamanova AN. Endothelial dysfunction in COVID- 19 and cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(6):93‑99. (In Russ.)
https://doi.org/10.17116/jnevro202112106193

Recommended articles:
Cognitive impairment in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):81-90
The role of drug Cyto­flavin in the correction of dysautonomia in patients with post-COVID syndrome. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):140-146
Features of arte­rial blood flow velo­city characteristics in endo­thelial dysfunction. Russian Journal of Preventive Medi­cine. 2024;(12):100-106
Differentiated approach to cognitive reha­bilitation of patients after stroke. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(6):5-11

References:

  1. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8.  https://doi.org/10.1016/j.cell.2020.02.052
  2. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-1263. https://doi.org/10.1126/science.abb2507
  3. Zhao S, Lin Q, Ran J, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis. 2020;92:214-217.  https://doi.org/10.1016/j.ijid.2020.01.050
  4. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-192.  https://doi.org/10.1007/s11684-020-0754-0.
  5. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-637.  https://doi.org/10.1002/path.1570
  6. Robinson FA, Mihealsick RP, Wagener BM, et al. Role of angiotensin-converting enzyme 2 and pericytes in cardiac complications of COVID-19 infection. Am J Physiol Heart Circ Physiol. 2020;319(5):1059-1068. https://doi.org/10.1152/ajpheart.00681.2020;
  7. Chen R, Wang K, Yu J, Howard D, et al. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front Neurol. 2021;11:573095. https://doi.org/10.3389/fneur.2020.573095
  8. Heneka MT, Golenbock D, Latz E, Morgan D, Brown R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther. 2020;12(1):69.  https://doi.org/10.1186/s13195-020-00640-3
  9. Godo S, Shimokawa H. Endothelial functions. Arterioscler Thromb Vasc Biol. 2017;37(9):108-114.  https://doi.org/10.1161/ATVBAHA.117.309813
  10. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057-1069. https://doi.org/10.7150/ijbs.7502
  11. Chiva-Blanch G, Sala-Vila A, Crespo J, Ros E, Estruch R, Badimon L. The Mediterranean diet decreases prothrombotic microvesicle release in asymptomatic individuals at high cardiovascular risk. Clin Nutr. 2020;39(11):3377-3384. https://doi.org/10.1016/j.clnu.2020.02.027
  12. Schmidt-Lucke C, Rössig L, Fichtlscherer S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005;111(22):2981-2987. https://doi.org/10.1161/CIRCULATIONAHA.104.504340.
  13. Oliveras A, Soler MJ, Martínez-Estrada OM, et al. Endothelial progenitor cells are reduced in refractory hypertension. J Hum Hypertens. 2008;22(3):183-190.  https://doi.org/10.1038/sj.jhh.1002304
  14. Varga Z. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-1418. https://doi.org/10.1016/S0140-6736(20)30937-5
  15. Nagashima S, Mendes MC, Camargo Martins AP, et al. Endothelial dysfunction and thrombosis in patients with COVID-19 brief report. Arterioscler Thromb Vasc Biol. 2020t;40(10):2404-2407. https://doi.org/10.1161/ATVBAHA.120.314860
  16. Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J. 2020;41(32):3038-3044. https://doi.org/10.1093/eurheartj/ehaa623
  17. Sims JT, Krishnan V, Chang CY, et al. Characterization of the cytokine storm reflects hyperinflammatory endothelial dysfunction in COVID-19. J Allergy Clin Immunol. 2021;147(1):107-111.  https://doi.org/10.1016/j.jaci.2020.08.031
  18. Petrey AC, Qeadan F, Middleton EA, Pinchuk IV, Campbell RA, Beswick EJ. Cytokine release syndrome in COVID-19: Innate immune, vascular, and platelet pathogenic factors differ in severity of disease and sex. J Leukoc Biol. 2021;109(1):55-66.  https://doi.org/10.1002/JLB.3COVA0820-410RRR
  19. Helms J, Tacquard C, Severac F, et al; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089-1098. https://doi.org/10.1007/s00134-020-06062-x
  20. Nägele MP, Haubner B, Tanner FC, Ruschitzka F, Flammer AJ. Endothelial dysfunction in COVID-19: Current findings and therapeutic implications. Atherosclerosis. 2020;314:58-62.  https://doi.org/10.1016/j.atherosclerosis.2020.10.014
  21. Lasso G, Honig B, Shapira SD. A sweep of earth’s virome reveals host-guided viral protein structural mimicry and points to determinants of human disease. Cell Syst. 2021;12(1):82-91.e3.  https://doi.org/10.1016/j.cels.2020.09.006
  22. Yapici-Eser H, Koroglu YE, Oztop-Cakmak O, Keskin O, Gursoy A, Gursoy-Ozdemir Y. Neuropsychiatric symptoms of COVID-19 explained by SARS-CoV-2 proteins’ mimicry of human protein interactions. Front Hum Neurosci. 2021;15:656313. https://doi.org/10.3389/fnhum.2021.656313
  23. Paniz-Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J, Sordillo EM, Fowkes M. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699-702.  https://doi.org/10.1002/jmv.25915
  24. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, Baxter-Stoltzfus A, Laurence J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020;220:1-13.  https://doi.org/10.1016/j.trsl.2020.04.007
  25. Lee MH, Perl DP, Nair G, et al. Microvascular injury in the brains of patients with COVID-19. N Engl J Med. 2021;384(5):481-483.  https://doi.org/10.1056/NEJMc2033369
  26. Merkler AE, Parikh NS, Mir S, et al. Risk of ischemic stroke in patients with Coronavirus disease 2019 (COVID-19) vs patients with influenza. JAMA Neurol. 2020;77(11):1-7.  https://doi.org/10.1001/jamaneurol.2020.2730
  27. Miners S, Kehoe PG, Love S. Cognitive impact of COVID-19: looking beyond the short term. Alzheimers Res Ther. 2020;12(1):170.  https://doi.org/10.1186/s13195-020-00744-w
  28. Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020;7(7):611-627.  https://doi.org/10.1016/S2215-0366(20)30203-0
  29. Varatharaj A, Thomas N, Ellul MA, et al; CoroNerve Study Group. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 2020;7(10):875-882.  https://doi.org/10.1016/S2215-0366(20)30287-X
  30. Ortelli P, Ferrazzoli D, Sebastianelli L, et al. Neuropsychological and neurophysiological correlates of fatigue in post-acute patients with neurological manifestations of COVID-19: Insights into a challenging symptom. J Neurol Sci. 2021;420:117271. https://doi.org/10.1016/j.jns.2020.117271
  31. Del Brutto OH, Wu S, Mera RM, Costa AF, Recalde BY, Issa NP. Cognitive decline among individuals with history of mild symptomatic SARS-CoV-2 infection: A longitudinal prospective study nested to a population cohort. Eur J Neurol. 2021;10.1111/ene.14775. https://doi.org/10.1111/ene.14775
  32. Amalakanti S, Arepalli KVR, Jillella JP. Cognitive assessment in asymptomatic COVID-19 subjects. Virusdisease. 2021;8(23): 1-4.  https://doi.org/10.1007/s13337-021-00663-w
  33. Kumar S, Veldhuis A, Malhotra T. Neuropsychiatric and cognitive sequelae of COVID-19. Front Psychol. 2021;12:577529. https://doi.org/10.3389/fpsyg.2021.577529
  34. Zhou H, Lu S, Chen J, et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020;129:98-102.  https://doi.org/10.1016/j.jpsychires.2020.06.022
  35. Hampshire A, Trender W, Chamberlain SR, et al. Cognitive deficits in people who have recovered from COVID-19 relative to controls: An N=84,285 online study. medRxiv 2020.10.20.20215863. https://doi.org/10.1101/2020.10.20.20215863
  36. Miskowiak KW, Johnsen S, Sattler SM, et al. Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur Neuropsychopharmacol. 2021;46:39-48.  https://doi.org/10.1016/j.euroneuro.2021.03.019
  37. Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382(23):2268-2270. https://doi.org/10.1056/NEJMc2008597
  38. Montalvan V, Lee J, Bueso T, De Toledo J, Rivas K. Neurological manifestations of COVID-19 and other coronavirus infections: A systematic review. Clin Neurol Neurosurg. 2020;194:105921. https://doi.org/10.1016/j.clineuro.2020.105921
  39. Kas A, Soret M, Pyatigoskaya N, et al.; on the behalf of CoCo-Neurosciences study group and COVID SMIT PSL study group. The cerebral network of COVID-19-related encephalopathy: a longitudinal voxel-based 18F-FDG-PET study. Eur J Nucl Med Mol Imaging. 2021;7(12): 1-15.  https://doi.org/10.1007/s00259-020-05178-y
  40. Ramiro S, Mostard RLM, Magro-Checa C, et al. Historically controlled comparison of glucocorticoids with or without tocilizumab versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: results of the CHIC study. Ann Rheum Dis. 2020;79(9):1143-1151. https://doi.org/10.1136/annrheumdis-2020-218479
  41. Firan FC, Romila A, Onose G. Current synthesis and systematic review of main effects of calf blood deproteinized medicine (Actovegin) in ischemic stroke. Int J Mol Sci. 2020;21(9):3181. https://doi.org/10.3390/ijms21093181
  42. Reichl FX, Högg C, Liu F, et al. Actovegin reduces PMA-induced inflammation on human cells. Eur J Appl Physiol. 2020;120(7):1671-1680. https://doi.org/10.1007/s00421-020-04398-2
  43. Elmlinger MW, Kriebel M, Ziegler D. Neuroprotective and anti-oxidative effects of the hemodialysate Actovegin on primary rat neurons in vitro. Neuromol Med. 2011;13:266-274.  https://doi.org/10.1007/s12017-011-8157-7
  44. Machicao F, Muresanu DF, Hundsberger H, Pflüger M, Guekht A. Pleiotropic neuroprotective and metabolic effects of Actovegin’s mode of action. J Neurol Sci. 2012;322(1-2):222-227.  https://doi.org/10.1016/j.jns.2012.07.069
  45. Stelmakh A, Abrahamovych O, Cherkas A. Highly purified calf hemodialysate (Actovegin) may improve endothelial function by activation of proteasomes: A hypothesis explaining the possible mechanisms of action. Med Hypotheses. 2016;95:77-81.  https://doi.org/10.1016/j.mehy.2016.09.008
  46. Fedorovich AA. Non-invasive evaluation of vasomotor and metabolic functions of microvascular endothelium in human skin. Microvasc Res. 2012;84(1):86-93.  https://doi.org/10.1016/j.mvr.2012.03.011
  47. Fedorovich AA, Soboleva GN. Correction of cognitive disorders with Actovegin in patients with arterial hypertension and ischemic heart disease. Effective Pharmacotherapy. 2015;23:42-51. (In Russ.).
  48. Tanashyan MM, Shabalina AA, Lagoda OV, et al. Multimodal approach to treatment of neurological complications of chronic brain ischemia. Terapevticheskiy Arkhiv. 2018;90(12):61-67. (In Russ.). https://doi.org/10.26442/00403660.2018.12.000010
  49. Kovalchuk VV. The role of the new coronavirus infection (COVID-19) in the progression and development of cerebrovascular diseases. A competent choice of pathogenic treatment is the key to success in treatment and prevention. An expert’s view from the ‘red zone’. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2021;13(1):57-66. (In Russ.). https://doi.org/10.14412/2074-2711-2021-1-57-66

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.