The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Iznak A.F.

Mental Health Research Centre

Iznak E.V.

Mental Health Research Centre

EEG predictors of therapeutic response in psychiatry

Authors:

Iznak A.F., Iznak E.V.

More about the authors

Read: 2932 times


To cite this article:

Iznak AF, Iznak EV. EEG predictors of therapeutic response in psychiatry. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(4):145‑151. (In Russ.)
https://doi.org/10.17116/jnevro2021121041145

Recommended articles:
The gut microbiota in bipo­lar diso­rder. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):28-33
The role of immuno-inflammatory factors in the deve­lopment of nega­tive symptoms in schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):42-48
A role of transcription factors in pathogenic processes asso­ciated with schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):49-54
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121
Impact of various reha­bilitation programs on anxiety and depression after surgery of early-stage cervical cancer. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(5):40-44

References:

  1. Yager J, Feinstein RE. Potential Applications of the National Institute of Mental Health’s Research Domain Criteria (RDoC) to Clinical Psychiatric Practice: How RDoC Might Be Used in Assessment, Diagnostic Processes, Case Formulation, Treatment Planning, and Clinical Notes. J Clin Psychiatry. 2017;78(4):423–432.  https://doi.org/10.4088/JCP.15nr10476
  2. Nasrallah HA. First Editorial: Biomarkers in neuropsychiatric disorders: Translating research to clinical applications. Biomarkers in Neuropsychiatry. 2019;1(1):1–3.  https://doi.org/10.1016/j.bionps.2019.100001
  3. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.  https://doi.org/10.1067/mcp.2001.113989
  4. McGorry P, Kesavan M, Goldstone S, et al. Biomarkers and clinical staging in psychiatry. World Psychiatry. 2014;13(3):211–223.  https://doi.org/10.1002/wps.20144
  5. Olbrich S, van Dinteren R, Arns M. Personalized medicine: review and perspectives of promising baseline EEG biomarkers in major depressive disorder and attention deficit hyperactivity disorder. Neuropsychobiology. 2015;72:229–240.  https://doi.org/10.1159/000437435
  6. Ritsner MS, Gottesman II. Where Do We Stand in the Quest for Neuropsychiatric Biomarkers and Endophenotypes and What Next?. In: Ritsner MS, ed. The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer Netherlands; 2009. p. 3–20. (Neuropsychological Endophenotypes and Biomarkers; Vol. 1). https://doi.org/10.1007/978-1-4020-9464-4_1
  7. Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level: report by the Secretariat [Internet]. World Health Organization; 2012. Accessed Feb 24, 2021. https://apps.who.int/iris/handle/10665/78898
  8. Campbell A, Young PI, Bateman DN, et al. The use of atypical antipsychotics in the management of schizophrenia (review). Brit J Clin Pharmacol. 1999;47(1):13–22.  https://doi.org/10.1046/j.1365-2125.1999.00849.x
  9. Beaumont G. Antipsychotics – the future of schizophrenia treatment. Curr Med Res Opin. 2000;16(1):37–42.  https://doi.org/10.1185/0300799009117006
  10. Iosifescu DV. Electroencephalography-Derived Biomarkers of Antidepressant Response. Harv Rev Psychiatry. 2011;19(3):144–154.  https://doi.org/10.3109/10673229.2011.586549
  11. McMahon FJ, Buervenich S, Charney D, et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet. 2006;78(5):804–814.  https://doi.org/10.1086/503820
  12. Mayberg HS, Brannan SK, Mahurin RK, et al. Cingulate function in depression: a potential predictor of treatment response. Neuroreport. 1997;8(4):1057–1061. https://doi.org/10.1097/00001756-199703030-00048.
  13. Canli T, Cooney RE, Goldin P, et al. Amygdala reactivity to emotional faces predicts improvement in major depression. Neuroreport. 2005;16(12):1267–1270. https://doi.org/10.1097/01.wnr.0000174407.09515.cc
  14. Itil TM, ed. Psychotropic Drugs and the Human EEG. 1st ed. S. Karger; 1974. 377 p. (Modern Trends in Psychiatry; Vol. 8). ISBN-13 : 978-3805514194
  15. Ulrich G, Renfordt E, Zeller G, Frick K. Interrelation between changes in the EEG and psychopathology under pharmacotherapy for endogenous depression. A contribution to the predictor question. Pharmacopsychiatry. 1984;17(6):178–183.  https://doi.org/10.1055/s-2007-1017433
  16. Ulrich G, Haug HJ, Fähndrich E. Acute vs. chronic EEG effects in maprotiline- and in clomipramine-treated depressive inpatients and the prediction of therapeutic outcome. J Affect Disord. 1994;32(3):213–217.  https://doi.org/10.1016/0165-0327(94)90020-5
  17. Baskaran A, Farzan F, Milev R, et al. The comparative effectiveness of electroencephalographic indices in predicting response to escitalopram therapy in depression: A pilot study. J Affect Disord. 2018;227:542–549.  https://doi.org/10.1016/j.jad.2017.10.028
  18. Kandilarova SS, Terziyski KV, Draganova AI, et al. Response to Pharmacological Treatment in Major Depression Predicted by Electroencephalographic Alpha Power – a Pilot Naturalistic Study. Folia Med (Plovdiv). 2017;59(5):318–325.  https://doi.org/10.1515/folmed-2017-0040
  19. Knott V, Mahoney C, Kennedy S, Evans K. Pre-treatment EEG and its relationship to depression severity and paroxetine treatment outcome. Pharmacopsychiatry. 2000;33(6):201–205.  https://doi.org/10.1055/s-2000-8356
  20. Bruder GE, Stewart JW, Tenke CE, et al. Electroencephalographic and perceptual asymmetry differences between responders and nonresponders to an SSRI antidepressant. Biol Psychiatry. 2001;49(5):416–425.  https://doi.org/10.1016/s0006-3223(00)01016-7
  21. Bruder GE, Sedoruk JP, Stewart JW, et al. Electroencephalographs alpha measures predict therapeutic response to a selective serotonin reuptake inhibitor antidepressant: pre- and posttreatment findings. Biol Psychiatry. 2008;63(12):1171–1177. https://doi.org/10.1016/j.biopsych.2007.10.009
  22. Jernajczyk W, Gosek P, Latka M, et al. Alpha Wavelet Power as a Biomarker of Antidepressant Treatment Response in Bipolar Depression. Adv Exp Med Biol. 2017;968:79–94.  https://doi.org/10.1007/5584_2016_180
  23. Melnikova TS, Tsukarzi EE, Kovalev AV, Mosolov SN. Spectral characteristics of an electroencephalogram (EEG) as potential biomarkers of the effectiveness of transcranial magnetic stimulation therapy for resistant depression. Current Therapy of Mental Disorders. 2016;(3):2–8. (In Russ.). https://doi.org/10.21265/PSYPH.2016.38.3547
  24. Feenstra BW, Holsheimer J. Dipole-like neuronal sources of theta rhythm in dorsal hippocampus, dentate gyrus and cingulated cortex of the urethane anesthetized rat. Electroencephalogr Clin Neurophysiol. 1979;47(5):532–538.  https://doi.org/10.1016/0013-4694(79)90254-2
  25. Ishii R, Shinosaki K, Ukai S, et al. Medial prefrontal cortex generates frontal midline theta rhythm. Neuroreport. 1999;10(4):675–679.  https://doi.org/10.1097/00001756-199903170-00003
  26. Asada H, Fukuda Y, Tsunoda S, et al. Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neurosci Lett. 1999;274(1):29–32.  https://doi.org/10.1016/s0304-3940(99)00679-5
  27. Heikman P, Salmelin R, Makela JP, et al. Relation between frontal 3–7 Hz MEG activity and the efficacy of ECT in major depression. J ECT. 2001;17(2):136–140.  https://doi.org/10.1097/00124509-200106000-00009
  28. Iosifescu DV, Greenwald S, Devlin P, et al. Frontal EEG predictors of treatment outcome in major depressive disorder. Eur Neuropsychopharm. 2009;19(11):772–777.  https://doi.org/10.1016/j.euroneuro.2009.06.001
  29. Arns M, Etkin M, Hegerl U, et al. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome? Eur Neuropsychopharm. 2015;25(8):1190–1200. https://doi.org/10.1016/j.euroneuro.2015.03.007
  30. Spronk D, Arns M, Barnett KJ, et al. An investigation of EEG, genetic and cognitive markers of treatment response to antidepressant medication in patients with major depressive disorder: a pilot study. J Affect Disord. 2011;128(1–2):41–48.  https://doi.org/10.1016/j.jad.2010.06.021
  31. Korb AS, Hunter AM, Cook A, Leuchter AF. Rostral anterior cingulate cortex theta current density and response to antidepressants and placebo in major depression. Clin Neurophysiol. 2009;120(7):1313–1319. https://doi.org/10.1016/j.clinph.2009.05.008
  32. Leuchter AF, Cook A, Lufkin RB, et al. Cordance: a new method for assessment of cerebral perfusion and metabolism using quantitative electroencephalography. Neuroimage. 1994;1(3):208–219.  https://doi.org/10.1006/nimg.1994.1006
  33. Bares M, Brunovsky M, Kopecek M, et al. Changes in QEEG prefrontal cordance as a predictor of response to antidepressants in patients with treatment resistant depressive disorder: a pilot study. J Psychiatr Res. 2007;41(3–4):319–325.  https://doi.org/10.1016/j.jpsychires.2006.06.005
  34. Bares M, Brunovsky M, Kopecek M, et al. Early reduction in prefrontal thetaQEEG cordance value predicts response to venlafaxine treatment in patients with resistant depressive disorder. Eur Psychiatry. 2008;23(5):350–355.  https://doi.org/10.1016/j.eurpsy.2008.03.001
  35. Leuchter AF, Cook A, Gilmer WS, et al. Effectiveness of a quantitative electroencephalographic biomarker for predicting differential response or remission with escitalopram and bupropion in major depressive disorder. Psychiatry Res. 2009;169(2):132–138.  https://doi.org/10.1016/j.psychres.2009.04.004
  36. Davidson RJ. Affective style and affective disorders: Perspectives from affective neuroscience. Cogn Emot. 1998;12(3):307–330.  https://doi.org/10.1080/026999398379628
  37. Mumtaz W, Xia L, Mohd Yasin MA, et al. A wavelet-based technique to predict treatment outcome for Major Depressive Disorder. PLoS ONE. 2017;12(2):e0171409. https://doi.org/10.1371/journal.pone.0171409
  38. Gokten ES, Tulay EE, Beser B, et al. Predictive Value of Slow and Fast EEG Oscillations for Methylphenidate Response in ADHD. Clin EEG Neurosci. 2019;50(5):332–338.  https://doi.org/10.1177/1550059419863206
  39. Kar SK. Predictors of Response to Repetitive Transcranial Magnetic Stimulation in Depression: A Review of Recent Updates. Clin Psychopharmacol Neurosci. 201928;17(1):25–33.  https://doi.org/10.9758/cpn.2019.17.1.25
  40. Micoulaud-Franchi JA, Richieri R, Cermolacce M, et al. Parieto-temporal alpha EEG band power at baseline as a predictor of antidepressant treatment response with repetitive transcranial magnetic stimulation: a preliminary study. J Affect Disord. 2012;137(1–3):156–160.  https://doi.org/10.1016/j.jad.2011.12.030
  41. Narushima K, McCormick LM, Yamada T, et al. Subgenual cingulate theta activity predicts treatment response of repetitive transcranial magnetic stimulation in participants with vascular depression. J Neuropsychiatry Clin Neurosci. 2010;22(1):75–84.  https://doi.org/10.1176/jnp.2010.22.1.75
  42. Bares M, Brunovsky M, Novak T, et al. QEEG Theta Cordance in the Prediction of Treatment Outcome to Prefrontal Repetitive Transcranial Magnetic Stimulation or Venlafaxine ER in Patients With Major Depressive Disorder. Clin EEG Neurosci. 2015;46(2):73–80.  https://doi.org/10.1177/1550059413520442
  43. Iznak EV, Iznak AF, Oleichik IV. Quantitative EEG in prediction of efficiency of combined antidepressive treatment included transcranial magnetic stimulation. Fiziologiia cheloveka. 2020;46(6):43–49. (In Russ.). https://doi.org/10.31857/S0131164620060041
  44. Czobor P, Volavka J. Pretreatment EEG predicts short-term response to haloperidol treatment. Biol Psychiatry. 1991;30(9):927–942.  https://doi.org/10.1016/0006-3223(91)90006-8
  45. Galderisi S, Maj M, Mucci A, et al. QEEG alpha-1 changes after a single dose of high-potency neuroleptics as a predictor of short-term response to treatment in schizophrenic patients. Biol Psychiatry. 1994;35(6):367–374.  https://doi.org/10.1016/0006-3223(94)90002-7
  46. Itil TM, Shapiro D, Schneider SJ, Francis IB. Computerized EEG as a predictor of drug response in treatment resistant schizophrenics. J Nerv Ment Dis. 1981;169(10):629–637.  https://doi.org/10.1097/00005053-198110000-00006
  47. Suffin SC, Emory WH. Neurometric subgroups in attentional and affective disorders and their association with pharmacotherapeutic outcomes. Clin Electroencephalography. 1995;26(2):76–83.  https://doi.org/10.1177/155005949502600204
  48. Iznak AF, Iznak EV, Klyushnik TP, et al. Regression models of interrelationships between clinical and neurobiological parameters in treatment of manic-delusional conditions in attack-like schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry = Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2016;116(3):33–38. (In Russ.). https://doi.org/10.17116/jnevro20161163133-38
  49. Iznak AF, Iznak EV, Klyushnik TP, et al. Neurobiological parameters in quantitative prediction of treatment outcome in schizophrenic patients. J Integr Neurosci. 2018;17(3):221–228.  https://doi.org/10.31083/JIN-170054
  50. Iznak AF, Iznak EV, Abramova LI, Lozhnikov MA. Models for the Quantitative Prediction of Therapeutic Responses Based on the Baseline EEG Parameters in Depressive Patients. Fiziologiia cheloveka. 2019;45(6):614–620. (In Russ.). https://doi.org/10.1134/S0362119719060057
  51. Suffin SC, Emory WH, Gutierrez G, et al. A QEEG database method for predicting pharmacotherapeutic outcome in refractory major depressive disorders. J Am Physicians Surg. 2007;12(4):104–108. 
  52. Carpenter G, Harbin HT, Smith RL, et al. A promising new strategy to improve treatment outcomes for patients with depression. Popul Health Manag. 2019;22(3):223–228.  https://doi.org/10.1089/pop.2018.0101
  53. Debattista C, Kinrys G, Hoffman D, et al. The use of referenced-EEG (rEEG) in assisting medication selection for the treatment of depression. J Psychiatr Res. 2011;45(1):64–75.  https://doi.org/10.1016/j.jpsychires.2010.05.009
  54. Schiller MJ. Quantitative Electroencephalography in Guiding Treatment of Major Depression. Front Psychiatry. 2019;9(1):1–7.  https://doi.org/10.3389/fpsyt.2018.00779
  55. Iosifescu D, Neborsky R, Valuck RJ. The use of the Psychiatric Electroencephalography Evaluation Registry (PEER) to personalize pharmacotherapy. Neuropsychiatr Dis Treat. 2016;12:2131–2142. https://doi.org/10.2147/NDT.S113712

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.