Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Сорокина Н.Д.

ФГБОУ ВО «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Минздрава России

Жердева А.С.

ФГБОУ ВО «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Минздрава России

Селицкий Г.В.

ФГБОУ ВО «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Минздрава России

Цагашек А.В.

ФГБОУ ВО «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Минздрава России

Нейрофизиологические методы оценки различных форм мигрени

Авторы:

Сорокина Н.Д., Жердева А.С., Селицкий Г.В., Цагашек А.В.

Подробнее об авторах

Просмотров: 4488

Загрузок: 143


Как цитировать:

Сорокина Н.Д., Жердева А.С., Селицкий Г.В., Цагашек А.В. Нейрофизиологические методы оценки различных форм мигрени. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(4):121‑126.
Sorokina ND, Zherdeva AS, Selitsky GV, Tsagashek AV. Neurophysiological methods in the assessment of different forms of migraine. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(4):121‑126. (In Russ.)
https://doi.org/10.17116/jnevro2021121041121

Рекомендуем статьи по данной теме:
На­ру­ше­ния сна у боль­ных с ле­карствен­но-ин­ду­ци­ро­ван­ной го­лов­ной болью. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. Спец­вы­пус­ки. 2024;(5-2):93-98
Осо­бен­нос­ти пер­вич­ных форм го­лов­ной бо­ли при рас­се­ян­ном скле­ро­зе. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(6):70-73
Окис­ли­тель­ный стресс в па­то­ге­не­зе хро­ни­чес­кой го­лов­ной бо­ли. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(10):35-40
Транскра­ни­аль­ная маг­нит­ная сти­му­ля­ция при ле­че­нии деп­рес­сив­ных расстройств. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(10):55-59
Мик­рос­трук­тур­ные из­ме­не­ния го­лов­но­го моз­га у па­ци­ен­тов с фо­каль­ной ви­соч­ной эпи­леп­си­ей по дан­ным диф­фу­зи­он­но-кур­то­зис­ной МРТ. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(11):171-177
Связь про­дук­тов пи­та­ния и ком­по­нен­тов пи­щи с час­то­той прис­ту­пов миг­ре­ни. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(12):30-35
Ле­карствен­но-ин­ду­ци­ро­ван­ная го­лов­ная боль: ха­рак­те­рис­ти­ка па­ци­ен­тов и ис­поль­зу­емых аналь­ге­ти­чес­ких пре­па­ра­тов до об­ра­ще­ния в спе­ци­али­зи­ро­ван­ный центр. Рос­сий­ский жур­нал бо­ли. 2024;(2):16-21
Роль каль­ци­то­нин-ген-родствен­но­го пеп­ти­да в па­то­фи­зи­оло­гии миг­ре­ни. Рос­сий­ский жур­нал бо­ли. 2024;(2):56-67
Биоакус­ти­чес­кая кор­рек­ция в те­ра­пии фан­том­но-бо­ле­во­го син­дро­ма. (Пи­лот­ное ис­сле­до­ва­ние). Воп­ро­сы ку­рор­то­ло­гии, фи­зи­оте­ра­пии и ле­чеб­ной фи­зи­чес­кой куль­ту­ры. 2024;(4):30-35
Осо­бен­нос­ти вы­бо­ра пре­па­ра­тов для ку­пи­ро­ва­ния прис­ту­пов миг­ре­ни и го­лов­ной бо­ли нап­ря­же­ния жен­щи­на­ми во вре­мя бе­ре­мен­нос­ти. Рос­сий­ский жур­нал бо­ли. 2024;(3):12-18

Нейрофизиологические исследования используются для дифференциальной диагностики различных видов головной боли, оценки возможных осложнений у пациентов с симптоматической головной болью, а также для нейрореабилитации. Анализ электрофизиологических параметров способствует лучшему пониманию механизмов головной боли, в частности мигрени [1]. В патогенезе мигрени рассматриваются нервный, сосудистый и эндокринно-гуморальный факторы [1—4]. Нейрофизиологическими методами, используемыми в диагностике головной боли, особенно мигрени, являются: электроэнцефалография (ЭЭГ), вызванные потенциалы (ВП) (зрительные, слуховые, лазерные и др.), рефлекторные реакции (мигательный рефлекс и др.), исследования вегетативной нервной системы и транскраниальная магнитная стимуляция (ТМС). Обзоры электрофизиологических исследований мигрени описывают функциональные изменения между мигренозными приступами, в том числе гиперчувствительность на неоднократные сенсорные стимулы с патологичным временны́м процессом обработки информации, основанной на работе нейронных сетей [5].

Анализ биоэлектрической активности головного мозга

Оценке биоэлектрической активности головного мозга посвящено огромное количество публикаций, которые включают оценку ЭЭГ как в межприступный период, так и непосредственно до, во время и после пароксизма. В целом чаще выявляют дезорганизованную биоэлектрическую активность, снижение амплитуды альфа-ритма и повышение мощности бета-ритма свыше 15 мкВ. Часто выявляют также билатерально-синхронные колебания, вспышки альфа- и тета-активности, при ритмической фотостимуляции наблюдается депрессия реакции усвоения ритма в широком диапазоне с распространением по всей коре, а признаки раздражения регистрируются в задних отделах головного мозга [1, 2, 5].

Отдельные авторы выявляют особенности, характерные для исследованной группы пациентов, подчеркивая те или иные отличия от здоровых и других групп пациентов. Так, по мнению некоторых авторов, у больных мигренью не выявляются значимые изменений в ЭЭГ, однако признаки пароксизмальной активности имеются у больных мигренью и эпилепсией [6]. Также у пациентов с мигренью с аурой обнаружена достоверно большая мощность бета-активности во всех корковых областях [7]. Авторы объясняют это повышенной активацией при мигрени с аурой при визуальной стимуляции.

В более ранних работах авторы [8] выявляли в межприступный период при мигрени диффузное или фокальное повышение медленноволновой активности с преобладанием ритмов в дельта- и тета-диапазонах, повышение быстроволновой активности, появление отдельных комплексов «пик — волна», межполушарной асимметрии по альфа- и тета-ритму.

В более поздних работах исследовали также и изменения ЭЭГ во время пароксизма головной боли. Например, показано, что спектральная мощность дельта-ритма возрастала в лобно-центральных областях за 36—72 ч перед (или после) приступа по сравнению с межприступным периодом [9]. Спектральная мощность в теменно-затылочных областях в альфа- и тета-диапазонах была более асимметрична (выше на стороне боли) по сравнению с межприступным периодом.

Этими же авторами было обнаружено в другом исследовании, что для пациентов с мигренью по сравнению с контролем характерно относительное повышение спектральной мощности в тета-диапазоне и повышение дельта-активности на стороне боли во фронто-центральной области. Увеличение интенсивности боли коррелировало с увеличением мощности дельта-активности. В целом авторы выявили относительное повышение тета-активности у пациентов с мигренью по сравнению со здоровыми [10].

Другие авторы выявили, что перед мигренозным пароксизмом мощность ритмов ЭЭГ и когерентность возрастали, в то же время уменьшалась когерентность между лобными и затылочными областями во всех спектральных диапазонах ЭЭГ. В межприступный период у пациентов по сравнению со здоровыми наблюдали достоверно меньшую спектральную мощность и когерентность ЭЭГ [11].

M. Bjork и соавт. [12] обнаружили, что у больных с мигренью без ауры в межприступный период по сравнению с контролем было увеличение относительной мощности тета-активности и уменьшение ответов на среднечастотную фотостимуляцию. В период 36 ч до развития мигренозного приступа на ЭЭГ регистрировалась медленная и асимметричная активность. Повышенная чувствительность к зрительным стимулам и фотофобия коррелировали с высокой мощностью тета-активности и снижением ответов на фотостимуляцию. Длительность приступа, продолжительность болезни и интенсивность боли коррелировали с ростом спектральной мощности медленной активности ЭЭГ. Авторы пришли к выводу, что общая тенденция к замедлению ритмической активности ЭЭГ и подавление ответов на фотостимуляцию характеризует группу больных с мигренью.

У пациентов с мигренью выявлялся рост высокочастотной биоэлектрической активности в диапазоне гамма-ритма, которая характеризует повышенную активацию мозгового ствола по таламо-кортикальным путям и нарушение латерального торможения интернейронов, опосредованного ГАМК [13].

Показана дисфункция неспецифических систем мозга при исследовании биоэлектрической активности головного мозга у больных мигренью в виде увеличения признаков пароксизмальности. У больных мигренью с аурой, наряду с общими, но более выраженными изменениями были выявлены снижение представленности альфа-ритма и его частотные асимметрии в задних отделах мозга, что свидетельствует об особом функциональном состоянии затылочной коры [14].

Большинство ЭЭГ-исследований доказывают патологическое взаимодействие между таламусом и корой (таламокортикальная дизритмия) [1, 12].

Кроме того, выявляемость эпилептиформной активности у пациентов с мигренью существенно выше, чем в популяции. В большом мультицентровом исследовании распространенность спайков, или пароксизмальных ритмических вспышек, в течение 10-часового ночного мониторинга ЭЭГ у здоровых добровольцев составила 0,7% по сравнению с 12,5% у пациентов с мигренью и 13,3% у обследованных с семейным анамнезом эпилепсии [15].

Так, обнаружено, что у больных мигренью и эпилепсией выявляется по данным спектрального анализа генерализация эпилептиформной активности на стороне боли и сдвиги пика частоты в бета- и альфа-диапазонах по сравнению со здоровыми [16].

Зрительные ВП (ЗВП)

В период пароксизма мигренозной боли больные страдают, в частности, фотофобией, что исследуется различными нейрофизиологическими методами [1, 5]. Электрофизиологические исследования больных мигренью выявляют изменения нейрональной активности во время пароксизма и в межприступном периоде. Избыточная активность нейронов зрительных областей коры больших полушарий характеризуется как «мигренозный мозг», что проявляется снижением порога вызванной активности в первичной зрительной коре. В межприступном периоде у больных мигренью регистрируются ЗВП достоверно более высокой амплитуды [17—19].

В работах [20, 21] исследованы пациенты с мигренью и контрольная группа. В качестве стимула использовался монокулярно и бинокулярно предъявляемый реверсивный шахматный паттерн. Измеряли латентный период (ЛП) компонентов N75, P100, N145, а также амплитуду от пика до пика N75—P100. Показано, что у пациентов по сравнению с группой контроля достоверно увеличен ЛП компонентов N75, P100, в то время как амплитуда этих компонентов была снижена. У пациентов с большей длительностью болезни обнаружена бо́льшая величина ЛП N145. При этом ЛП P100 был достоверно увеличен у больных с аурой по сравнению с пациентами без ауры. Кроме того, при зрительной стимуляции левого глаза у больных с левосторонней гемикранией наблюдалось увеличение ЛП и уменьшение амплитуды N75. Таким образом, измерение ЛП и амплитуды ЗВП является ценным и надежным тестом для диагностики мигрени.

В другом исследовании [22] проводили изучение влияния световой стимуляции на зависимость от интенсивности стимула ЗВП у пациентов с мигренью и у здоровых лиц. Осуществляли непрерывную стимуляцию световыми вспышками во время регистрации ЗВП на надпорговые стимулы возрастающей интенсивности. Зависимость от интенсивности СВП измеряли как наклон функции амплитуда/интенсивность стимула. В группе контроля амплитуда/интенсивность стимула уменьшались во время стимуляции вспышками света, в то время как при мигрени достоверных изменений обнаружено не было. Визуальная сенсорная нагрузка способна увеличить зависимость ЗВП от интенсивности у большинства пациентов с мигренью в отличие от контроля. Авторы выдвигают гипотезу, что данный феномен может быть обусловлен гиперсинхронизацией альфа-ритма и, возможно, таламо-кортикальной дисфункцией.

В большинстве исследований по данным ЗВП выявляется увеличение амплитуды вызванных ответов в межприступном периоде в зрительной коре [20, 23]. Асимметрия амплитуды ЗВП также выявлена в ряде исследований [23].

У пациентов с мигренью в интериктальный период выявляют высокую зависимость от интенсивности стимула ЗВП и недостаточную габитуацию ЗВП. Навязывание ритма при высокочастотной фотостимуляции является другой хорошо известной особенностью интериктального периода больных мигренью, связанной с гиперсинхронизацией альфа-ритма [24—26].

Соматосенсорные (ССВП), слуховые, тригеминальные ВП

Амплитуда и латентность стандартных ССВП после стимуляции срединного нерва были нормальными между приступами в большинстве исследований, хотя увеличение амплитуды было обнаружено в работе с использованием магнитоэнцефалографии [18].

Было проведено исследование [27] различий сенситизации и габитуации ССВП (при стимуляции срединного нерва на запястье) у пациентов с абузусной головной болью (АГБ) и пациентов с эпизодической мигренью без ауры. Измеряли амплитуды N20—P25 трех блоков усреднения, состоящих из 100 кривых. Оценивали чувствительность амплитуды первого блока и габитуацию амплитуды, измеренную между тремя последовательными блоками. При эпизодической мигрени амплитуда ССВП в интериктальном периоде была нормальной в первом блоке усреднений, но габитуация отсутствовала. Амплитуда ССВП в период приступа была увеличена в первом блоке с последующей габитуацией. Пациенты с АГБ характеризовались большей амплитудой первого блока ССВП по сравнению с контролем, нарушением габитуации. Наименьшие значения амплитуды ССВП обнаружены у пациентов с наибольшей длительностью заболевания мигренью, а самые высокие — у пациентов с самой длительной хронизацией болезни.

Обнаружено удлинение ЛП волны P300, снижение ее амплитуды и уменьшение длительной габитуации в межприступный период, что свидетельствует о некотором снижении когнитивных функций у пациентов с мигренью [28].

Дефицит габитуации, который обнаружен при регистрации когнитивных ВП, связанных с событиями, рассматривается как наиболее выраженная дисфункция в интериктальный период [29].

Многими исследованиями показано, что P300 при мигрени характеризуется удлиненным ЛП [30]. Отмечено удлинение ЛП P300 при регистрации слухового ВП у пациентов в отведениях Fz, Cz и Pz по сравнению с контрольной группой.

Исследование стволовых акустических ВП, амплитуда которых обратно пропорциональна активности центральной серотонинергической нейротрансмиссии, показало, что мигрень может рассматриваться как хроническое гипосеротонинергическое состояние [31].

В другой работе [32] использование специального фильтра в регистрации ССВП позволило выделить серии высокочастотных осцилляций (в полосе гамма-ритма). Показано, что ранние компоненты (до N20) и поздние компоненты (после N20) высокочастотных осцилляций позволяют оценить таламокортикальную проводниковую активность и активацию первичной коры. Между приступами ранние компоненты высокочастотных осцилляций достоверно ниже, чем поздние, у пациентов с мигренью [32—35], это снижение коррелирует с прогрессированием болезни [34].

Выявлено удлинение ЛП I, III, V пиков слуховых ВП и межпикового интервала I—III, III—V, I—V при мигрени с аурой; при мигрени без ауры достоверно значимыми оказались пролонгация пиков I, III, V и длительность межпикового интервала III—V и I—VI [36]. Пролонгацию рассматривают как следствие вовлечения структур ствола мозга. Следует подчеркнуть, что развитие зрительных или соматосенсорных симптомов во время ауры мигрени коррелирует с топографией и скоростью распространения волны корковой депрессии [37].

Подтверждением гипервозбудимости мозга при мигрени является регистрация вызванной нейрональной деполяризации, сопровождающейся изменениями метаболизма клеток и лежащей в основе корковой распространяющейся деполяризации [38].

Исследование тригеминальных ВП у пациентов с мигренью без ауры в межприступном периоде выявило укорочение ЛП ранних и промежуточных компонентов тригеминальных ВП на стороне боли, что достоверно чаще наблюдается во время мигренозного приступа. Эти результаты свидетельствуют о гиперактивности тригеминальной системы при мигрени на стороне локализации боли, а также указывают на участие данной системы в формировании боли при мигрени [39].

Лазерные ВП (ЛВП)

Одним из относительно новых нейрофизиологических методов в изучении боли является исследование ЛВП. Еще в 1976 г. Carmon продемонстрировали появление церебрального потенциала в области вертекса при стимуляции кожи рук здоровых испытуемых импульсами инфракрасного лазера. Оказалось, что амплитуда этого потенциала коррелирует с интенсивностью болевых ощущений.

В одном из многочисленных исследований с применением ЛВП [40] были изучены характеристики, а также кожные тепловые болевые пороги на лазерную стимуляцию точек перикраниальных мышц. Авторы выявили при головной боли напряжения, так же как и при фибромиалгии, увеличение амплитуды перикраниальных ЛВП, что предполагает психогенное происхождение боли. При мигрени нормальная амплитуда основных ЛВП с уменьшенной габитуацией и нарушением модуляции внимания, вероятно, отражает общую дисфункцию обработки ноцицептивной информации корой мозга, которая может обусловливать предрасположенность и персистирование мигрени. ЛВП могут использоваться в клинической оценке нейрофизиологических и психофизиологических аспектов боли при различных формах головной и лицевой боли.

Несмотря на то что ЛВП с ЭЭГ-ответом все чаще используется для изучения ноцицептивных путей, их функциональное значение остается неясным. Показано, что увеличение временнóй продолжительности стимула за счет повторения стимула на постоянном межстимульном интервале: 1) значительно уменьшает величины вызванных лазером компонентов N1, N2, P2 и синхронизации; 2) нарушает связь между интенсивностью восприятия боли и величиной этих реакций [41]. Результаты показали, что вызванные лазером ЭЭГ-реакции не определяются восприятием боли как таковой, а в основном определяются выраженностью вызывающего ноцицептивного стимула (т.е. его способностью включить внимание). Поэтому регистрация вызванных ЭЭГ-ответов лазерной стимуляции представляют собой косвенное считывание функции ноцицептивной системы.

ЛВП-исследования подтверждают понижение габитуации при повторяющейся стимуляции в межприступный период при мигрени, что было обнаружено как для короткого периода ноцицептивной стимуляции [42], так и для более длительного периода [43].

Показатели вегетативной нервной системы

Для мигренозного пароксизма очень характерно побледнение лица в результате генерализованной симпатической реакции [37]. Авторы работы [44] с целью исследования активности симпатической нервной системы у пациентов с мигренью изучали фронтальные вызванные кожные симпатические потенциалы (ВКСП). Исследованы пациенты с односторонней мигренью и контрольная группа. Исследование проводилось во время мигренозного приступа в постприступный и интериктальный периоды. ВКСП регистрировались билатерально в ответ на электрическую стимуляцию срединного нерва на запястье. У пациентов во время мигренозного приступа и в интериктальный период наблюдалось увеличение ЛП и уменьшение максимальных амплитуд на стороне боли по сравнению с асимптомной стороной. В постприступный период ВКСП на стороне боли характеризовались более высокими амплитудами и более коротким ЛП по сравнению с асимптомной стороной. По мнению авторов, обнаруженный феномен свидетельствует об асимметричной симпатической гипофункции на стороне боли во время мигренозного приступа и в межприступный период и асимметричной гиперфункции симпатической нервной системы в постприступный период. Обнаруженная гиперактивация симпатической нервной системы, возможно, связана с измененной опиоидной модуляцией.

У пациентов с мигренью регистрировали ЛП и амплитуду N1, N2, Р2 ВП при стимуляции блуждающего нерва. Стимуляция индуцировала увеличение мощности ЭЭГ в медленных и быстрых ритмах, но этот эффект не был значительным по сравнению с плацебо. Эти выводы свидетельствуют о том, что стимуляция блуждающего нерва действует на области коры больших полушарий, отвечающие за локализацию боли, связанной с тройничным нервом [45].

Транскраниальная магнитная стимуляция (ТМС)

ТМС является неинвазивной, безопасной, безболезненной и эффективной методикой как реабилитации, так и диагностики при головных болях, в том числе при мигрени. Нейронные эффекты воздействия ТМС изучены, в частности, с помощью ТМС-ЭЭГ [46].

В 2017 г. были опубликованы результаты доказательного двойного слепого рандомизированного плацебо-контролируемого исследования эффективности ТМС в лечении мигрени [47], в котором показано снижение частоты, интенсивности болей, степени инвалидизации. Клиническое улучшение связывали с повышением уровня β-эндорфина в плазме крови.

На основании вышеизложенного можно заключить, что основные электрофизиологические находки — это, во-первых, возрастание навязывания частоты фотостимуляции и синхронизации в альфа- и бета-диапазонах ЭЭГ, во-вторых, дефицит габитуации в межприступный период к повторяющимся стимулам при регистрации ВП и нормализация во время приступа, в-третьих, снижение габитуации на болевые стимулы, которая не возвращается к нормальным значениям во время приступа, в-четвертых, то, что одним из наиболее убедительных аргументов гипервозбудимости мозга при мигрени является концепция провоцированной нейрональной деполяризации, сопровождающейся изменениями метаболизма клеток и лежащей в основе корковой распространяющейся деполяризации [28].

Таким образом, электрофизиологические исследования обеспечивают функциональное исследование различных сенсорных путей и углубляют понимание механизмов формирования различных форм мигрени, а также выявляют корреляции между изменениями нейрофизиологических показателей и нарушением (изменением) когнитивных функций, эмоциональной сферы, используются для дифференциальной диагностики различных видов головной боли, в том числе при мигрени.

Авторы заявляют об отсутствии конфликта интересов.

The authors declare no conflicts of interest.

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.