The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Lopatina A.V.

Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency

Sviridova A.A.

Federal Center of Brain research and Neurotechnologies of the Federal Medical Biological Agency of Russia

Belousova O.O.

Federal Center of Brain Research and Neurotechnologies

Kuzmina U.Sh.

Federal Center of Brain Research and Neurotechnologies;
Ufa Federal Research Center

Melnikov M.V.

Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency;
Pirogov Russian National Research Medical University;
National Research Center Institute of Immunology of the Federal Medical Biological Agency

The role of dopamine receptors in the modulation of mononuclear phagocytes in multiple sclerosis

Authors:

Lopatina A.V., Sviridova A.A., Belousova O.O., Kuzmina U.Sh., Melnikov M.V.

More about the authors

Read: 1199 times


To cite this article:

Lopatina AV, Sviridova AA, Belousova OO, Kuzmina USh, Melnikov MV. The role of dopamine receptors in the modulation of mononuclear phagocytes in multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(7‑2):79‑84. (In Russ.)
https://doi.org/10.17116/jnevro202412407279

Recommended articles:
Immu­nological aspe­cts of reccurent pregnancy loss. Russian Journal of Human Reproduction. 2024;(5):64-71
Surgical treatment of seco­ndary trigeminal neuralgia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):203-209
Quality of life of patients with multiple scle­rosis in the Smolensk region. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):36-40
Hybrid wound coating in reha­bilitation of severe thermal burns. (An expe­rimental study). Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(6-2):40-49
Hormonal contraception methods and multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):24-30
Epidemiology of multiple scle­rosis in the city of Novo­sibirsk. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):119-127
A clinical case of X-linked adre­noleukodystrophy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4):102-107

References:

  1. van Langelaar J, Rijvers L, Smolders J, et al. B and T Cells Driving Multiple Sclerosis: Identity, Mechanisms and Potential Triggers. Front Immunol. 2020;11:760.  https://doi.org/10.3389/fimmu.2020.00760
  2. Charabati M, Wheeler MA, Weiner HL, Quintana FJ. Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting. Cell. 2023;186(7):1309-1327. https://doi.org/10.1016/j.cell.2023.03.008
  3. Nally FK, De Santi C, McCoy CE. Nanomodulation of Macrophages in Multiple Sclerosis. Cells. 2019;8(6):543.  https://doi.org/10.3390/cells8060543
  4. Ifergan I, Miller SD. Potential for Targeting Myeloid Cells in Controlling CNS Inflammation. Front Immunol. 2020;11:571897. https://doi.org/10.3389/fimmu.2020.571897
  5. Boyko A, Melnikov M, Zhetishev R, et al. The Role of Biogenic Amines in the Regulation of Interaction between the Immune and Nervous Systems in Multiple Sclerosis. Neuroimmunomodulation. 2016;23(4):217-223.  https://doi.org/10.1159/000449167
  6. Melnikov M, Rogovskii V, Sviridova A, et al. The Dual Role of the β2-Adrenoreceptor in the Modulation of IL-17 and IFN-γ Production by T Cells in Multiple Sclerosis. Int J Mol Sci. 2022;23(2):668.  https://doi.org/10.3390/ijms23020668
  7. Melnikov M, Sviridova A, Rogovskii V, et al. The Role of D2-like Dopaminergic Receptor in Dopamine-mediated Modulation of Th17-cells in Multiple Sclerosis. Curr Neuropharmacol. 2022;20(8):1632-1639. https://doi.org/10.2174/1570159X19666210823103859
  8. Vidal PM, Pacheco R. Targeting the Dopaminergic System in Autoimmunity. J Neuroimmune Pharmacol. 2020;15(1):57-73.  https://doi.org/10.1007/s11481-019-09834-5
  9. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162-173.  https://doi.org/10.1016/S1474-4422(17)30470-2.
  10. Kurtzke JF. Rating neurologyc impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33:1444-1452.
  11. Han TH, Jin P, Ren J, et al. Evaluation of 3 clinical dendritic cell maturation protocols containing lipopolysaccharide and interferon-gamma. J Immunother. 2009;32(4):399-407.  https://doi.org/10.1097/CJI.0b013e31819e1773
  12. Pashenkov MV, Balyasova LS, Dagil YA, et al. The Role of the p38-MNK-eIF4E Signaling Axis in TNF Production Downstream of the NOD1 Receptor. J Immunol. 2017;198(4):1638-1648. https://doi.org/10.4049/jimmunol.1600467
  13. Billingham LK, Stoolman JS, Vasan K, et al. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol. 2022;23(5):692-704.  https://doi.org/10.1038/s41590-022-01185-3
  14. Correale J, Halfon MJ, Jack D, et al. Acting centrally or peripherally: A renewed interest in the central nervous system penetration of disease-modifying drugs in multiple sclerosis. Mult Scler Relat Disord. 2021;56:103264. https://doi.org/10.1016/j.msard.2021.103264
  15. Marino F, Cosentino M. Multiple sclerosis: Repurposing dopaminergic drugs for MS-the evidence mounts. Nat Rev Neurol. 2016;12(4):191-192.  https://doi.org/10.1038/nrneurol.2016.33
  16. Pinoli M, Marino F, Cosentino M. Dopaminergic Regulation of Innate Immunity: a Review. J Neuroimmune Pharmacol. 2017;12(4):602-623.  https://doi.org/10.1007/s11481-017-9749-2
  17. Nakano K, Higashi T, Hashimoto K, et al. Antagonizing dopamine D1-like receptor inhibits Th17 cell differentiation: preventive and therapeutic effects on experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun. 2008;373(2):286-291.  https://doi.org/10.1016/j.bbrc.2008.06.012
  18. Prado C, Contreras F, González H, et al. Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity. J Immunol. 2012;188(7):3062-3070. https://doi.org/10.4049/jimmunol.1103096
  19. Prado C, Gaiazzi M, González H, et al. Dopaminergic Stimulation of Myeloid Antigen-Presenting Cells Attenuates Signal Transducer and Activator of Transcription 3-Activation Favouring the Development of Experimental Autoimmune Encephalomyelitis. Front Immunol. 2018;9:571.  https://doi.org/10.3389/fimmu.2018.00571
  20. Moser T, Akgün K, Proschmann U, et al. The role of TH17 cells in multiple sclerosis: Therapeutic implications. Autoimmun Rev. 2020;19(10):102647. https://doi.org/10.1016/j.autrev.2020.102647
  21. Grebenciucova E, VanHaerents S. Interleukin 6: at the interface of human health and disease. Front Immunol. 2023;14:1255533. https://doi.org/10.3389/fimmu.2023.1255533
  22. Mendiola AS, Cardona AE. The IL-1β phenomena in neuroinflammatory diseases. J Neural Transm (Vienna). 2018;125(5):781-795.  https://doi.org/10.1007/s00702-017-1732-9
  23. Furgiuele A, Pereira FC, Martini S, et al. Dopaminergic regulation of inflammation and immunity in Parkinson’s disease: friend or foe? Clin Transl Immunology. 2023;12(10):e1469. https://doi.org/10.1002/cti2.1469

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.