The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Moskvin S.V.

Academy of Postgraduate Education of the Federal Clinical and Scientific Center for Specialized Medical Care and Technologies of the Federal Biological Medical Agency

Kochetkov A.V.

Academy of Postgraduate Education of the Federal Clinical and Scientific Center for Specialized Medical Care and Technologies of the Federal Biological Medical Agency

Aleksandrova N.A.

Academy of Postgraduate Education of the Federal Clinical and Scientific Center for Specialized Medical Care and Technologies of the Federal Biological Medical Agency

Gameeva E.V.

Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology of the Federal Medical-Biological Agency

Low-level laser therapy in multiple sclerosis: justification and optimization methods of application. (Literature review)

Authors:

Moskvin S.V., Kochetkov A.V., Aleksandrova N.A., Gameeva E.V.

More about the authors

Read: 1636 times


To cite this article:

Moskvin SV, Kochetkov AV, Aleksandrova NA, Gameeva EV. Low-level laser therapy in multiple sclerosis: justification and optimization methods of application. (Literature review). Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;101(5):45‑56. (In Russ.)
https://doi.org/10.17116/kurort202410105145

Recommended articles:
Effect of low-intensity laser-therapy in the correction of ence­phalopathy in obstructive jaundice. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(6):19-24
Surgical treatment of seco­ndary trigeminal neuralgia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):203-209
Iatrogenic Hype­rmelanoses in a Doctor’s Practice. Russian Journal of Clinical Dermatology and Vene­reology. 2024;(6):730-739
Quality of life of patients with multiple scle­rosis in the Smolensk region. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):36-40
Hormonal contraception methods and multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):24-30
Epidemiology of multiple scle­rosis in the city of Novo­sibirsk. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):119-127

References:

  1. Bogolepova AN, Vasenina EE, Gomzyakova NA, Gusev EI, Dudchenko NG, Emelin AYu, Zalutskaya NM, Isaev RI, Kotovskaya YuV, Levin OS, Litvinenko IV, Lobzin VYu, Martynov MU, Mkhitaryan EA, Neznanov NG, Palchikova EI, Tkacheva ON, Cherdak MA, Chimagomedova ASh, Yakhno NN. Clinical Guidelines for Cognitive Disorders in Elderly and Older Patients. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(10-3):6-137. (In Russ.). https://doi.org/10.17116/jnevro20211211036
  2. Rasseyannyi skleroz. Klinicheskie rekomendatsii. Moskva: MZ RF; 2022. (In Russ.).
  3. Kil’dyushevskii AV. Ekstrakorporal’naya gemokorrektsiya pri limfoproliferativnykh i autoimmunnykh zabolevaniyakh: Avtoref. dis. … d-ra med. nauk. Moscow; 1997. (In Russ.).
  4. Patent RUS №2005513/15.01.1994. Chentsova OB, Ol’shanskii AYa, Kil’dyushevskii AV, Grechanyi MP, Ryabtseva AA, Fialkovskii SYu. Sposob lecheniya autoimmunnykh zabolevanii. Accessed April 01, 2024. (In Russ.). https://www.fips.ru/iiss/document.xhtml?faces-redirect=true&id=9172b5db81ee6a4347a0e04158e6c82e
  5. Chemeris AN, Dmitriev AA, Pavlova IG. Rol’ plazmafereza v kompleksnom lechenii rasseyannogo skleroza. Materialy Nauchno-prakticheskoi konferentsii TsFO RF «Aktual’nye voprosy zamestitel’noi pochechnoi terapii, gemafereza i transplantatsionnoi koordinatsii». Moscow; 2010. (In Russ.).
  6. Moskvin SV, Khadartsev AA. Methods of effective low-level laser therapy in the treatment of patients with bronchial asthma. BioMedicine. 2020;10(1):1-20.  https://doi.org/10.37796/2211-8039.1000
  7. Moskvin SV. A brief literature review of low-level laser therapy for treating amyotrophic lateral sclerosis and confirmation of its effectiveness. BioMedicine. 2024;14(1):1-9.  https://doi.org/10.37796/2211-8039.1430
  8. Moskvin SV, Chernova NI. Laser therapy for herves virus infections (literature review). Journal of New Medical Technologies, e-edition. 2019;13(4):122-137. (In Russ.). https://doi.org/10.24411/2075-4094-2019-16467
  9. Perlamutrov YuN, Chernova NI, Ol’khovskaia KB, Moskvin SV. Combined laser therapy of the reactivated form of cytomegalovirus infection of the urogenital tract in the women of reproductive age. Problems of Balneology, Physiotherapy and Exercise Therapy. 2013;90(3):45-51. (In Russ.).
  10. Anju M, Chacko L, Chettupalli Y, et al. Effect of Low Level Laser Therapy on serum vitamin D and magnesium levels in patients with diabetic peripheral neuropathy ‒ A pilot study. Diabetes Metab Syndr. 2019;13(2):1087-1091. https://doi.org/10.1016/j.dsx.2019.01.022
  11. Heiskanen V, Pfiffner M, Partonen T. Sunlight and health: shifting the focus from vitamin D3 to photobiomodulation by red and near-infrared light. Ageing Res Rev. 2020;61:101089. https://doi.org/10.1016/j.arr.2020.101089
  12. Sosin IK, Chuev YuF. Tabachnaya zavisimost’. Kharkov; 2003. (In Russ.).
  13. Bicknell B, Laakso EL, Liebert A, Kiat H. Modifying the microbiome as a potential mechanism of photobiomodulation: a case report. Photobiomodul Photomed Laser Surg. 2022;40(2):88-97.  https://doi.org/10.1089/photob.2021.0057
  14. Barbas IM, Skoromets AA. Rasseyannyi skleroz. Opyt lecheniya, profilaktika obostrenii. Saint Petersburg: Sotisb; 2003. (In Russ.).
  15. Burmistrova MV, Ponomarenko GN, Odinak MM. Limfodreniruyushchie effekty infrakrasnogo lazernogo izlucheniya i geparin-elektroforeza u bol’nykh rasseyannym sklerozom. Problems of Balneology, Physiotherapy and Exercise Therapy. 2001;2:31-33. (In Russ.).
  16. Zhadin MN, Zakharova NM, Karneev AN, Marushak II. Izmeneniya elektricheskoi aktivnosti perezhivayushchego sreza neokorteksa morskoi svinki kak prognosticheskii pokazatel’ effektivnosti lazernoi terapii u bol’nykh, stradayushchikh rasseyannym sklerozom. Biomeditsina. 2007;6:97-102. (In Russ.).
  17. Zagumennikov SYu, Lubarskii MS, Smagin AA, Rot TA, Zemtsova NM, Zuevskii VP, Prokop’ev MN. Laser therapy in the combined treatment of disseminated sclerosis. Laser medicine. 2002;6(3):42-44. (In Russ.).
  18. Macheret EL, Yarosh AA, Korkushko AO. Vliyanie nizkoenergeticheskogo lazernogo izlucheniya na kliniko-immunologicheskie pokazateli u bol’nykh rasseyannym sklerozom. Deistvie nizkoenergeticheskogo lazernogo izlucheniya na krov’. Kiev; 1989:130-132. (In Russ.).
  19. Patent USSR №1364352/07.01.1988. Byul. №1. Gusev EI, Polonskii AK, Dubrovskaya MK, Lapochkin OL, Dubrovskaya NI. Sposob lecheniya narushenii mocheispuskaniya u bol’nykh rasseyannym sklerozom. Accessed April 01, 2024. (In Russ.). https://patents.su/3-1364352-sposob-lecheniya-narushenijj-mocheispuskaniya-u-bolnykh-rasseyannym-sklerozom.html
  20. Patent RUS №2005457/15.01.1994. Chernyak LA. Sposob lecheniya rasseyannogo skleroza. Accessed April 01, 2024. (In Russ.). https://www.fips.ru/iiss/document.xhtml?faces-redirect=true&id=533507bc3f8f4d54e90fb3feb3ff0653
  21. Patent RUS №2200041/10.03.2003. Ovsyannikov VA, Eliseeva IM, El’chaninov AP, Burmistrova MV. Sposob lecheniya bol’nykh rasseyannym sklerozom lazernym izlucheniem. Accessed April 01, 2024. (In Russ.). https://www.fips.ru/iiss/document.xhtml?faces-redirect=true&id=b4fc0e7a7cde4ac970c8d3e3256d3991
  22. Patent BY №9098/30.06.2006. Nedz’ved’ GK, Kolenchits NI, Tishina LA. Sposob lecheniya rasseyannogo skleroza. Accessed April 01, 2024. (In Russ.). https://bypatents.com/3-9098-sposob-lecheniya-rasseyannogo-skleroza.html
  23. Posvalyuk NE. Osobennosti rasseyannogo skleroza v Dal’nevostochnom regione: Avtoref. dis. … kand. med. nauk. Novosibirsk; 1995. (In Russ.).
  24. Tupikin GV, Timofeev VT, Goloviznin MV, Klushin YuI, Kazantseva NV, Idrisova MI. Immunomoduliruyushchii effekt lazernogo oblucheniya krovi u bol’nykh revmatoidnym artritom i rasseyannym sklerozom. Sbornik nauchnykh trudov «Infektsiya i revmaticheskie zabolevaniya». Moscow; 1994:182-190. (In Russ.).
  25. Eninya GI, Metra MYa, Chernyakov VA. Primenenie lazernogo izlucheniya dlya lecheniya rasseyannogo skleroza. Izvestiya Latviiskoi AN. 1991;3(524):120-124. (In Russ.).
  26. Yausheva MV. Vozmozhnosti nizkointensivnogo lazernogo izlucheniya v lechenii bol’nykh rasseyannym sklerozom: Avtoref. dis. … kand. med. nauk. Kazan; 2005. (In Russ.).
  27. Essa SA, Shendy WS. Photobiomodulation for relapsing–remitting multiple-sclerosis management: a nonrandomized controlled trial. Kasr Al Ainy Med J. 2021;27:62-68.  https://doi.org/10.4103/kamj.kamj_21_21
  28. Essa SA, Mostafa YM, Fathi SM, et al. Could phototherapy reverse visual deficits in patients with relapsing-remitting multiple sclerosis? J Med Sci Clin Res. 2015;3(5):5479-5494. https://doi.org/10.18535/jmscr
  29. Essa S, Mostafa Y, Fathi S, et al. Spasticity is modifiable through phototherapy in patients with relapsing remitting multiple sclerosis: a randomized controlled study. Kasr Al Ainy Med J. 2016;22(3):81-90.  https://doi.org/10.4103/2356-8097.195887.
  30. Gonçalves MLL, Kalil Bussadori S, Dadalti Fragoso Y, et al. Effect of photodynamic therapy in the reduction of halitosis in patients with multiple sclerosis: clinical trial. J Breath Res. 2017;11(4):046006. https://doi.org/10.1088/1752-7163/aa8209
  31. Koyama T, Ohshiro T. Low reactive-level laser therapy improved systemic sclerosis-associated Raynaud’s phenomenon. Laser Therapy. 2007;16(3):151-157.  https://doi.org/10.5978/islsm.16.151
  32. Kubsik A, Klimkiewicz P, Woldańska-Okońska M. Zastosowanie promieniowania laserowego w fizjoterapii chorych na stwardnienie rozsiane. Wiad Lek. 2012;65(1):55-61.  KubsikA,KlimkiewiczP,Woldańska-OkońskaM.Applicationoflasertherapyinthephysiotherapyofpatientswithmultiplesclerosis.WiadLek.2012;65(1):55-61.(InPolish).
  33. Kubsik A, Klimkiewicz R, Janczewska K, et al. Application of laser radiation and magnetostimulation in therapy of patients with multiple sclerosis. NeuroRehabilitation. 2016;38(2):183-190.  https://doi.org/10.3233/NRE-161309.
  34. Peszyński-Drews C, Klimek A, Sopinski M, Obrzejta D. Laser biostimulation of patients suffering from multiple sclerosis in respect to the biological influence of laser light. Proc. SPIE 5229, Laser Technology VII: Applications of Lasers. 2003;97-103.  https://doi.org/10.1117/12.520611
  35. Peszyński-Drews C, Sztamska E, Klimek A. Rehabilitacja laserowa w zaawansowanych postaciach postępującego stwardnienia rozsianego. Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna. 2006;12(3):179-181. 
  36. Schumm N. Intravenöse Laserblutbestrahlung bei Multipler Sklerose: ein neues Therapieverfahren mit signifikanter Verbesserung der Lebensqualität. Komplementäre und Integrative Medizin. 2008;49(11-12):38-43.  https://doi.org/10.1016/j.kim.2008.10.001
  37. Seada YI, Nofel R, Sayed HM. Comparison between trans-cranial electromagnetic stimulation and low-level laser on modulation of trigeminal neuralgia. J Phys Ther Sci. 2013;25(8):911-914.  https://doi.org/10.1589/jpts.25.911
  38. Silva T, Fragoso YD, Destro Rodrigues MFS, et al. Effects of photobiomodulation on interleukin-10 and nitrites in individuals with relapsing-remitting multiple sclerosis ‒ Randomized clinical trial. PLoS One. 2020;15(4):e0230551. https://doi.org/10.1371/journal.pone.0230551
  39. Tolentino M. Characterization of the effect of photobiomodulation on peripheral blood mononuclear cells and Cd4+ T cells from healthy donors and multiple sclerosis subjects [dissertation]. University of Wisconsin-Milwaukee; 2020.
  40. Tolentino M, Cho CC, Lyons JA. Photobiomodulation at 830 nm Reduced Nitrite Production by Peripheral Blood Mononuclear Cells Isolated from Multiple Sclerosis Subjects. Photobiomodul Photomed Laser Surg. 2022;40(7):480-487.  https://doi.org/10.1089/photob.2021.0170
  41. Tolentino M, Cho CC, Lyons JA. Photobiomodulation Modulates Interleukin-10 and Interferon Gamma Production by Mononuclear Cells from Healthy Donors and Persons with Multiple Sclerosis. Photobiomodul Photomed Laser Surg. 2022;40(4):234-244.  https://doi.org/10.1089/photob.2021.0169
  42. Maksimchuk LV, Makhovskaya TG, Khandurina GN, Shcherbonosova TA, Germanovich VV, Lolstonogova VI, Rafikov NM, Posvalyuk NE, Avramenko SP, Matvienko EV, Khelimskaya EA, Petrichko GI, Kaufman SS. Lazeroterapiya v nevrologicheskoi i neirokhirurgicheskoi praktike. Lazernaya terapiya v praktike vracha. Vladivostok; 1994:204-218. (In Russ.).
  43. Skupchenko VV, Makhovskaya TG, Serdyuk NB, Mironova LP. Endovaskulyarnaya lazeroterapiya v nevrologicheskoi praktike. Deistvie elektromagnitnogo izlucheniya na biologicheskie ob”ekty i lazernaya meditsina. Vladivostok: DVO AN SSSR; 1989:197-212. (In Russ.).
  44. Skupchenko VV, Makhovskaya TG. Lazernaya terapiya v nevrologii. — Samara-Khabarovsk; 1993. (In Russ.).
  45. Matveeva TV. O roli timusa v patogeneze rasseyannogo skleroza: Avtoref. dis.... kand. med. nauk. Minsk; 1975. (In Russ.).
  46. Mel’nik NA. Struktura nekotorykh organov nervnoi i immunnoi sistem v usloviyakh demielinizatsii i remilinizatsii: Avtoref. dis. … d-ra med. nauk. Kiev; 2005. (In Russ.).
  47. Gonçalves ED, Souza PS, Lieberknecht V, et al. Low-level laser therapy ameliorates disease progression in a mouse model of multiple sclerosis. Autoimmunity. 2016;49(2):132-142.  https://doi.org/10.3109/08916934.2015.1124425
  48. Muili KA, Gopalakrishnan S, Meyer SL, et al. Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light. PLoS One. 2012;7(1):e30655. https://doi.org/10.1371/journal.pone.0030655
  49. Muili KA, Gopalakrishnan S, Eells JT, Lyons JA. Photobiomodulation induced by 670 nm light ameliorates MOG35-55 induced EAE in female C57BL/6 mice: a role for remediation of nitrosative stress. PLoS One. 2013;8(6):e67358. https://doi.org/10.1371/journal.pone.0067358
  50. Nwosu U. Analysis of how B cells contribute to the photobiomodulation technique in regards to multiple sclerosis. Proceedings of the National Conference on Undergraduate Research (NCUR); 2018:420-427. 
  51. Duarte KCN, Soares TT, Magri AMP, et al. Low-level laser therapy modulates demyelination in mice. J Photochem Photobiol B. 2018;189:55-65.  https://doi.org/10.1016/j.jphotobiol.2018.09.024
  52. Farid MF, Abouelela YS, Yasin NAE, et al. Laser-activated autologous adipose tissue-derived stromal vascular fraction restores spinal cord architecture and function in multiple sclerosis cat model. Stem Cell Res Ther. 2023;14(1):6.  https://doi.org/10.1186/s13287-022-03222-2
  53. Abdallah AN, Shamaa AA, El-Tookhy OS. Evaluation of treatment of experimentally induced canine model of multiple sclerosis using laser activated non-expanded adipose derived stem cells. Res Vet Sci. 2019;125:71-81.  https://doi.org/10.1016/j.rvsc.2019.05.016
  54. Moskvin SV, Klyuchnikov DYu, Volchkov SE, Antipov EV, Supilnikov AA, Kiselyova ON. Influence of the pulse low-intensive laser radiation on culture of mesenchymal stem cells of the person of in vitro. Morphological Newsletter. 2014;3:59-65. (In Russ.).
  55. Hossein-Khannazer N, Kazem Arki M, Keramatinia A, Rezaei-Tavirani M. The Role of Low-Level Laser Therapy in the Treatment of Multiple Sclerosis: A Review Study. J Lasers Med Sci. 2021;12:e88.  https://doi.org/10.34172/jlms.2021.88
  56. Tolentino MA, Lyons JA. Photobiomodulation for multiple sclerosis in animal models. In: Hamblin MR, Huang YY, eds. Photobiomodulation in the Brain. Low-Level Laser (Light) Therapy in Neurology and Neuroscience. London: Academic Press, an imprint of Elsevier; 2019:241-251.  https://doi.org/10.1016/B978-0-12-815305-5.00019-1
  57. Moskvin SV, Ryzhova TV. Lazernaya terapiya v endokrinologii. Seriya «Effektivnaya lazernaya terapiya». Vol. 5. Moscow: IP Moskvin S.V.; Tver: OOO «Izdatel’stvo «Triada», 2020. (In Russ.).
  58. Mikusev YuE, Yausheva MV, Matveeva TV. Effects of low-intensity laser radiation on immune reactivity. Russian journal of physiotherapy, balneology and rehabilitation. 2003;3:39-43. (In Russ.).
  59. Alshial EE, Abdulghaney MI, Wadan AS, et al. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci. 2023;334:122257. https://doi.org/10.1016/j.lfs.2023.122257
  60. Johnson J, Mercado-Ayon E, Mercado-Ayon Y, et al. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch Biochem Biophys. 2021;702:108698. https://doi.org/10.1016/j.abb.2020.108698
  61. Vafaei-Nezhad S, Niknazar S, Payvandi AA, et al. Therapeutic Effects of Photobiomodulation Therapy on Multiple Sclerosis by Regulating the Inflammatory Process and Controlling Immune Cell Activity: A Novel Promising Treatment Target. J Lasers Med Sci. 2022;13:e32.  https://doi.org/10.34172/jlms.2022.32
  62. George Z, Tolentino MA, Lyons JA. Low-level laser therapy: a treatment modality for multiple sclerosis targeting autoimmunity and oxidative stress. In: Hamblin MR, de Sousa MVP, Agrawal T, eds. Handbook of Low-Level Laser Therapy. Pan Stanford Publishing Pte. Ltd.; 2017:491-501. 
  63. Liang J, Liu L, Xing D. Photobiomodulation by low-power laser irradiation attenuates Aβ-induced cell apoptosis through the Akt/GSK3β/β-catenin pathway. Free Radic Biol Med. 2012;53(7):1459-1467. https://doi.org/10.1016/j.freeradbiomed.2012.08.003
  64. da Silva T, da Silva FC, Gomes AO, et al. Effect of photobiomodulation treatment in the sublingual, radial artery region, and along the spinal column in individuals with multiple sclerosis: Protocol for a randomized, controlled, double-blind, clinical trial. Medicine (Baltimore). 2018;97(19):e0627. https://doi.org/10.1097/MD.0000000000010627
  65. Silva T, Fragoso YD, Destro Rodrigues MFS, et al. Effects of photobiomodulation on interleukin-10 and nitrites in individuals with relapsing-remitting multiple sclerosis ‒ Randomized clinical trial. PLoS One. 2020;15(4):e0230551. https://doi.org/10.1371/journal.pone.0230551
  66. Alvarenga-Filho H, Sacramento PM, Ferreira TB, et al. Combined exercise training reduces fatigue and modulates the cytokine profile of T-cells from multiple sclerosis patients in response to neuromediators. J Neuroimmunol. 2016;293:91-99.  https://doi.org/10.1016/j.jneuroim.2016.02.014
  67. Wong VL, Holahan MR. A systematic review of aerobic and resistance exercise and inflammatory markers in people with multiple sclerosis. Behav Pharmacol. 2019;30(8):653-660.  https://doi.org/10.1097/FBP.0000000000000514
  68. De Marchi T, Leal Junior EC, Bortoli C, et al. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci. 2012;27(1):231-236.  https://doi.org/10.1007/s10103-011-0955-5
  69. Leal Junior EC, Lopes-Martins RA, Baroni BM, et al. Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg. 2009;27(4):617-623.  https://doi.org/10.1089/pho.2008.2350
  70. Leal Junior EC, Lopes-Martins RA, Rossi RP, et al. Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med. 2009;41(8):572-577.  https://doi.org/10.1002/lsm.20810
  71. Leal-Junior ECP, de Oliveira MFD, Joensen J, et al. What is the optimal time-response window for the use of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) for the improvement of exercise performance and recovery, and for how long the effects last? A randomized, triple-blinded, placebo-controlled trial. BMC Sports Sci Med Rehabil. 2020;12:64.  https://doi.org/10.1186/s13102-020-00214-8
  72. Tolentino MA, Cho C, Rouhani M, et al. Photobiomodulation therapy for the treatment of multiple sclerosis: the effect of PBMT on the immune response and muscle function. Book of Abstracts virtual summit «PBM2021»; 2021:70. 
  73. Pinto AP, Guimarães CL, Souza GADS, et al. Sensory-motor and cardiorespiratory sensory rehabilitation associated with transcranial photobiomodulation in patients with central nervous system injury: Trial protocol for a single-center, randomized, double-blind, and controlled clinical trial. Medicine (Baltimore). 2019;98(25):e15851. https://doi.org/10.1097/MD.0000000000015851
  74. David AC, Zamuner SR. Efeito da fotobiomodulação na modulação da interleucina-10: revisão narrativa de estudos clínicos. Semina: Ciências Biológicas e da Saúde. 2021;42(2):235-242.  https://doi.org/10.5433/1679-0367.2021v42n2p235
  75. Martusevich AK. Oksid azota kak universal’nyi bioregulyator. Bioradikaly i Antioksidanty. 2019;6(1):5-19. (In Russ.).
  76. Evtushenko SK, Grishchenko AB, Derevyanko IN, Simonyan VA, Vinokurov DL, Lisovsky EV, Savchenko EA Role of a pathological tortuosity, hypo- and aplasias of precerebral vessels at progreduatedly current forms of multiple sclerosis. International neurological journal. 2007;4(14):39-44. (In Russ.).
  77. Moskvin SV. Osnovy lazernoi terapii. Seriya «Effektivnaya lazernaya terapiya». Vol. 1. Moscow-Tver: Izdatel’stvo «Triada»; 2016 (In Russ.).
  78. Moskvin SV, Kochetkov AV. Russian low level laser therapy techniques for brain disorders. In: Hamblin MR, Huang YY, eds. Photobiomodulation in the Brain. Low-Level Laser (Light) Therapy in Neurology and Neuroscience. London: Academic Press, an imprint of Elsevier, 2019:545-572.  https://doi.org/10.1016/B978-0-12-815305-5.00040-3
  79. Zhai D, Yan S, Samsom J, et al. Small-molecule targeting AMPA-mediated excitotoxicity has therapeutic effects in mouse models for multiple sclerosis. Sci Adv. 2023;9(49):eadj6187. https://doi.org/10.1126/sciadv.adj6187
  80. Huang YY, Nagata K, Tedford CE, Hamblin MR. Low-level laser therapy (810 nm) protects primary cortical neurons against excitotoxicity in vitro. J Biophotonics. 2014;7(8):656-664.  https://doi.org/10.1002/jbio.201300125
  81. Shen Q, Liu L, Gu X, Xing D. Photobiomodulation suppresses JNK3 by activation of ERK/MKP7 to attenuate AMPA receptor endocytosis in Alzheimer’s disease. Aging Cell. 2021;20(1):e13289. https://doi.org/10.1111/acel.13289
  82. Thompson AJ, Baneke P. Multiple Sclerosis International Federation (MSIF) Design and Editorial Support by Summers Editorial & Design Graphics by Nutmeg Productions Printed by Modern Colour Solutions; 2013 [cited 2020 Apr 13]. Available from: www.msif.org.
  83. Moskvin SV. Only lasers can be used for low level laser therapy. BioMedicine. 2017;7(4):4-11.  https://doi.org/10.1051/bmdcn/2017070422
  84. Moskvin SV. Low-Level Laser Therapy and Light Energy. Photobiomodul Photomed Laser Surg. 2019;37(5):267-268.  https://doi.org/10.1089/photob.2019.4622
  85. Samways AP, Menegusso D, Guimaraes AFS, Bunemer L. Effects of PBM in multiple sclerosis — case report. Book of Abstracts virtual summit «PBM2021»; 2021:91. 

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.