The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kamenskikh E.M.

Siberian State Medical University

Krygina A.Yu.

Siberian State Medical University

Gomboeva S.Ch.

Siberian State Medical University

Zhailebaeva D.

Siberian State Medical University

Koval D.P.

Siberian State Medical University

Kicherov N.A.

Siberian State Medical University

Otchurzhap Ch.N.

Siberian State Medical University

Birulina Yu.G.

Siberian State Medical University

Alifirova V.M.

Siberian State Medical University

Biobanking in clinical trials involving multiple sclerosis patients

Authors:

Kamenskikh E.M., Krygina A.Yu., Gomboeva S.Ch., Zhailebaeva D., Koval D.P., Kicherov N.A., Otchurzhap Ch.N., Birulina Yu.G., Alifirova V.M.

More about the authors

Read: 1449 times


To cite this article:

Kamenskikh EM, Krygina AYu, Gomboeva SCh, et al. . Biobanking in clinical trials involving multiple sclerosis patients. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(7‑2):7‑15. (In Russ.)
https://doi.org/10.17116/jnevro20241240727

Recommended articles:
Cognitive impairment in patients with multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4-2):67-73
Surgical treatment of seco­ndary trigeminal neuralgia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):203-209
Quality of life of patients with multiple scle­rosis in the Smolensk region. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):36-40
Hormonal contraception methods and multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):24-30
Epidemiology of multiple scle­rosis in the city of Novo­sibirsk. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):119-127
A clinical case of X-linked adre­noleukodystrophy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4):102-107

References:

  1. Mikhailova AA, Nasykhova YuA, Muravyov AI, et al. Towards the creation of a unified glossary of Russian biobanks. Cardiovascular Therapy and Prevention. 2020;19(6):2710. (In Russ.). https://doi.org/10.15829/1728-8800-2020-2710
  2. Coppola L, Cianflone A, Grimaldi A, et al. Biobanking in health care: evolution and future directions. J Transl Med. 2019;17(1):172.  https://doi.org/10.1186/s12967-019-1922-3
  3. Loft S, Poulsen HE. Cancer risk and oxidative DNA damage in man. J Mol Med. 1996;74(6):297-312.  https://doi.org/10.1007/BF00207507
  4. Bauchet L, Rigau V, Mathieu-Daudé H, et al. French brain tumor data bank: methodology and first results on 10,000 cases. J Neurooncol. 2007;84(2):189-199.  https://doi.org/10.1007/s11060-007-9356-9
  5. Abudumijiti A, Jun-Feng L, Jin-Song W, et al. Establishment and maintenance of a standardized glioma tissue bank: Huashan experience. Cell Tissue Bank. 2015;16(2):271-281.  https://doi.org/10.1007/s10561-014-9459-4
  6. Bregy A, Papadimitriou K, Faber D, et al. Banking Brain Tumor Specimens Using a University Core Facility. Biopreservation Biobanking. 2015;13(4):280-286.  https://doi.org/10.1089/bio.2014.0106
  7. White K, Yang P, Li L, et al. Effect of Postmortem Interval and Years in Storage on RNA Quality of Tissue at a Repository of the NIH NeuroBioBank. Biopreservation Biobanking. 2018;16(2):148-157.  https://doi.org/10.1089/bio.2017.0099
  8. UK Biobank — UK Biobank. Accessed May 19, 2022. https://www.ukbiobank.ac.uk/
  9. Manysheva KB. Gender peculiarities of acute disorders of cerebral circulation. Medical Alphabet. 2018;1(1):45-49. (In Russ.).
  10. Batty GD, Deary IJ, Luciano M, et al. Psychosocial factors and hospitalisations for COVID-19: Prospective cohort study based on a community sample. Brain Behav Immun. 2020;(89):569-578.  https://doi.org/10.1016/j.bbi.2020.06.021
  11. Nevado-Holgado AJ, Kim CH, Winchester L, et al. Commonly prescribed drugs associate with cognitive function: a cross-sectional study in UK Biobank. BMJ Open. 2016;6(11):e012177. https://doi.org/10.1136/bmjopen-2016-012177
  12. Golbin DA, Korochkina AL, Shugay SV, et al. Specialized biorepository for human brain glioma: project development and operational experience. Clin Exp Morphology. 2020;9(4):39-49. (In Russ.). https://doi.org/10.31088/CEM2020.9.4.39-49
  13. Gustavsen S, Søndergaard HB, Oturai DB, et al. Shift work at young age is associated with increased risk of multiple sclerosis in a Danish population. Mult Scler Relat Disord. 2016;9:104-109.  https://doi.org/10.1016/j.msard.2016.06.010
  14. Myhr KM, Grytten N, Aarseth JH. The Norwegian Multiple Sclerosis Registry and Biobank. Acta Neurol Scand. 2012;(195):20-23.  https://doi.org/10.1111/ane.12030
  15. Lorentzen A, Melum E, Ellinghaus E, et al. Association to the Glypican-5 gene in multiple sclerosis. J Neuroimmunol. 2010;226(1-2):194-197.  https://doi.org/10.1016/j.jneuroim.2010.07.003
  16. Sawcer S, Hellenthal G, Pirinen M, et al.; International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214-219.  https://doi.org/10.1038/nature10251
  17. Teunissen CE, Verheul C, Willemse EaJ. The use of cerebrospinal fluid in biomarker studies. Handb Clin Neurol. 2017;146:3-20.  https://doi.org/10.1016/B978-0-12-804279-3.00001-0
  18. Quintela T, Furtado A, Duarte AC, et al. The role of circadian rhythm in choroid plexus functions. Prog Neurobiol. 2021;205:102129. https://doi.org/10.1016/j.pneurobio.2021.102129
  19. Poceta JS, Parsons L, Engelland S, et al. Circadian rhythm of CSF monoamines and hypocretin-1 in restless legs syndrome and Parkinson’s disease. Sleep Med. 2009;10(1):129-133.  https://doi.org/10.1016/j.sleep.2007.11.002
  20. Abdi IY, Majbour NK, Willemse EAJ, et al. Preanalytical Stability of CSF Total and Oligomeric Alpha-Synuclein. Front Aging Neurosci. 2021;13:638718. https://doi.org/10.3389/fnagi.2021.638718
  21. Willemse E, van Uffelen K, Brix B, et al. How to handle adsorption of cerebrospinal fluid amyloid β (1—42) in laboratory practice? Identifying problematic handlings and resolving the issue by use of the Aβ42/Aβ40 ratio. Alzheimers Dement. 2017;13(8):885-892.  https://doi.org/10.1016/j.jalz.2017.01.010
  22. Janssens J, Atmosoerodjo SD, Vermeiren Y, et al. Sampling issues of cerebrospinal fluid and plasma monoamines: Investigation of the circadian rhythm and rostrocaudal concentration gradient. Neurochem Int. 2019;128:154-162.  https://doi.org/10.1016/j.neuint.2019.04.015
  23. Hok-A-Hin YS, Willemse EAJ, Teunissen CE, et al. Guidelines for CSF Processing and Biobanking: Impact on the Identification and Development of Optimal CSF Protein Biomarkers. Methods Mol Biol. 2019;2044:27-50.  https://doi.org/10.1007/978-1-4939-9706-0_2
  24. Ramont L, Thoannes H, Volondat A, et al. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med. 2005;43(11):1215-1217. https://doi.org/10.1515/CCLM.2005.210
  25. Durazzo TC, Mattsson N, Weiner MW, et al. History of cigarette smoking in cognitively-normal elders is associated with elevated cerebrospinal fluid biomarkers of oxidative stress. Drug Alcohol Depend. 2014;142:262-268.  https://doi.org/10.1016/j.drugalcdep.2014.06.030
  26. Zahr NM, Rohlfing T, Mayer D, et al. Transient CNS responses to repeated binge ethanol treatment. Addict Biol. 2016;21(6):1199-1216. https://doi.org/10.1111/adb.12290
  27. Multiple Sclerosis International null. Retracted: Consensus Guidelines for CSF and Blood Biobanking for CNS Biomarker Studies. Mult Scler Int. 2016;2016:8304273. https://doi.org/10.1155/2016/8304273
  28. Tashjian RS, Vinters HV, Yong WH. Biobanking of Cerebrospinal Fluid. Methods Mol Biol. 2019;1897:107-114.  https://doi.org/10.1007/978-1-4939-8935-5_11
  29. Hasselbalch IC, Søndergaard HB, Koch-Henriksen N, et al. The neutrophil-to-lymphocyte ratio is associated with multiple sclerosis. Mult Scler J — Exp Transl Clin. 2018;4(4):2055217318813183. https://doi.org/10.1177/2055217318813183
  30. Doludin YV, Borisova AL, Pokrovskaya MS, et al. Current best practicies and biobanking recommendations. Clinical Laboratory Diagnostics. 2019;64(12):769-776. (In Russ.). https://doi.org/10.18821/0869-2084-2019-64-12-769-776
  31. Cinkir U, Bir LS, Topsakal S, et al. Investigation of blood leptin and adropin levels in patients with multiple sclerosis: A CONSORT-clinical study. Medicine (Baltimore). 2021;100(37):e27247. https://doi.org/10.1097/MD.0000000000027247
  32. Yeo T, Sealey M, Zhou Y, et al. A blood-based metabolomics test to distinguish relapsing — remitting and secondary progressive multiple sclerosis: addressing practical considerations for clinical application. Sci Rep. 2020;10:12381. https://doi.org/10.1038/s41598-020-69119-3
  33. Hale VL, Tan CL, Knight R, et al. Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks. J Microbiol Met. 2015;(113):16-26.  https://doi.org/10.1016/j.mimet.2015.03.021
  34. Singh V, Stingl C, Stoop MP, et al. Proteomics urine analysis of pregnant women suffering from multiple sclerosis. J Proteome Res. 2015;14(5):2065-2073. https://doi.org/10.1021/pr501162w
  35. Choo JM, Leong LEX, Rogers GB. Sample storage conditions significantly influence faecal microbiome profiles. Sci Rep. 2015;5:16350. https://doi.org/10.1038/srep16350
  36. Ling Z, Cheng Y, Yan X, et al. Alterations of the Fecal Microbiota in Chinese Patients With Multiple Sclerosis. Front Immunol. 2020;11:590783. https://doi.org/10.3389/fimmu.2020.590783
  37. Annaratone L, De Palma G, Bonizzi G, et al. Basic principles of biobanking: from biological samples to precision medicine for patients. Virchows Arch. 2021;479(2):233-246.  https://doi.org/10.1007/s00428-021-03151-0
  38. Vonsattel J, Amaya M, Cortes E, et al. 21st Century Brain Banking Practical prerequisites and lessons from the past: The experience of New York Brain Bank — Taub Institute — Columbia University. Cell Tissue Bank. 2008;9(3):247-258.  https://doi.org/10.1007/s10561-008-9079-y
  39. Myhr KM, Grytten N, Torkildsen Ø, et al. The Norwegian Multiple Sclerosis Registry and Biobank. Acta Neurol Scand. 2015;132(S199):24-28.  https://doi.org/10.1111/ane.12427
  40. Newcombe J, Cuzner ML. Organization and research applications of the U.K. Multiple Sclerosis Society Tissue Bank. J Neural Transm Suppl. 1993;39:155-163. 
  41. Madsen M, Wiggermann V, Bramow S, et al. Imaging cortical multiple sclerosis lesions with ultra-high field MRI. NeuroImage Clin. 2021;32:102847. https://doi.org/10.1016/j.nicl.2021.102847
  42. Kutzelnigg A, Faber‐Rod J, Bauer J, et al. Widespread Demyelination in the Cerebellar Cortex in Multiple Sclerosis. Brain Pathol. 2007;17(1):38-44.  https://doi.org/10.1111/j.1750-3639.2006.00041.x
  43. Hametner S, Wimmer I, Haider L, et al. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol. 2013;74(6):848-861.  https://doi.org/10.1002/ana.23974
  44. Trapp BD, Vignos M, Dudman J, et al. Cortical neuronal loss and cerebral white matter demyelination in multiple sclerosis: a retrospective study. Lancet Neurol. 2018;17(10):870-884.  https://doi.org/10.1016/S1474-4422(18)30245-X
  45. Guimarães L, da Silva A, Micheletti A, et al. Morphological changes in the digestive system of 322 necropsies of patients with acquired immune deficiency syndrome: comparison of findings pre- and post-HAART (Highly Active Antiretroviral Therapy). Rev Inst Med Trop. 2017;59:e3.  https://doi.org/10.1590/S1678-9946201759003
  46. Martin M, Cravens P, Winger R, et al. Decrease in the Numbers of Dendritic Cells and CD4+ T Cells in Cerebral Perivascular Spaces Due to Natalizumab. Arch Neurol. 2008;65(12):1596-1603. https://doi.org/10.1001/archneur.65.12.noc80051
  47. Bell L, Lenhart A, Rosenwald A, et al. Lymphoid Aggregates in the CNS of Progressive Multiple Sclerosis Patients Lack Regulatory T Cells. Front Immunol. 2020;10:3090. https://doi.org/10.3389/fimmu.2019.03090
  48. Hauser SL, A K Bhan, F Gilles, et al. Immmohstochemical Analysis of the Cellular Infiltrate in Multiple Sclerosis. 1986;19(6):578-87.  https://doi.org/10.1002/ana.410190610
  49. Mirzaii-Dizgah M, Mirzaii-Dizgah M, Mirzaii-Dizgah I. Serum and Saliva Myelin Basic Protein as Multiple Sclerosis Biomarker. Basic Clin Neurosci. 2021;12(3):309-314.  https://doi.org/10.32598/bcn.2021.950.2
  50. Cicalini I, Rossi C, Pieragostino D, et al. Integrated Lipidomics and Metabolomics Analysis of Tears in Multiple Sclerosis: An Insight into Diagnostic Potential of Lacrimal Fluid. Int J Mol Sci. 2019;20(6):E1265. https://doi.org/10.3390/ijms20061265
  51. Safarinejad MR. Evaluation of endocrine profile, hypothalamic-pituitary-testis axis and semen quality in multiple sclerosis. J Neuroendocrinol. 2008;20(12):1368-1375. https://doi.org/10.1111/j.1365-2826.2008.01791.x
  52. Geht AB, Gulyaeva NV, Druzhkova TA. Et al. Analysis of cortisol in hair to assess stress retrospective: methodological approaches. Neurochemistry. 2015;32(1):73-75. (In Russ). https://doi.org/10.7868/S1027813315010069
  53. Pereira G, Becker J, Soares N, et al. Hair cortisol concentration, cognitive, behavioral, and motor impairment in multiple sclerosis. J Neural Transm. 2019;126(9):1145-1154. https://doi.org/10.1007/s00702-019-02040-w
  54. Domonova EA, Tvorogova MG, Podkolzin AT, et al. Collection, transportation and storage of biological material for PCR diagnostics. Guidelines. Moscow. Central Research Institute for Epidemiology. 2021. (In Russ.). https://doi.org/10.36233/978-5-6045286-6-2
  55. Valko PO, Roschitzki B, Faigle W, et al. In search of cerebrospinal fluid biomarkers of fatigue in multiple sclerosis: A proteomics study. J Sleep Res. 2019;28(3):e12721. https://doi.org/10.1111/jsr.12721
  56. Novakova L, Singh A, Axelsson M, et al. Sulfatide isoform pattern in cerebrospinal fluid discriminates progressive MS from relapsing-remitting MS. J Neurochem. 2018;146(3):322-332.  https://doi.org/10.1111/jnc.14452
  57. Thouvenot E, Hinsinger G, Demattei C, et al. Cerebrospinal fluid chitinase-3-like protein 1 level is not an independent predictive factor for the risk of clinical conversion in radiologically isolated syndrome. Mult Scler. 2019;25(5):669-677.  https://doi.org/10.1177/1352458518767043
  58. Sol N, Leurs C, Veld S, et al. Blood platelet RNA enables the detection of multiple sclerosis. Mult Scler J — Exp Transl Clin. 2020;6(3):2055217320946784. https://doi.org/10.1177/2055217320946784
  59. Kozin MS, Kulakova OG, Kiselev IS, et al. Variability of the Mitochondrial Genome and Development of the Primary Progressing form of Multiple Sclerosis. Molecular Biology. 2020;54(4):535-540. (In Russ.). https://doi.org/10.31857/S0026898420040084
  60. Melnikov MV, Sviridova AA, Solodova TV, et al. Blockade of D1-like dopaminergic receptors suppresses Th17-cell function in multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(7-2):82-89. (In Russ.). https://doi.org/10.17116/jnevro202112107282
  61. Baulina NM, Kabaeva AR, Boyko AN, Favorova OO. Changes in expression of miRNAs from the DLK1-DIO3 locus are characteristic of relapsing-remitting multiple sclerosis regardless of the disease activity. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(2):64-70. (In Russ.). https://doi.org/10.14412/2074-2711-2022-2-64-70
  62. Agostini S, Mancuso R, Costa A, et al. JCPyV miR-J1-5p in Urine of Natalizumab-Treated Multiple Sclerosis Patients. Viruses. 2021;13(3):468.  https://doi.org/10.3390/v13030468
  63. Gebregiworgis T, Nielsen Hh, Massilamany C, et al. A Urinary Metabolic Signature for Multiple Sclerosis and Neuromyelitis Optica. J Proteome Res. 2016;15(2):659-666.  https://doi.org/10.1021/acs.jproteome.5b01111
  64. Mirzaii-Dizgah I, Riahi E. Serum and saliva levels of cathepsin L in patients with acute coronary syndrome. J Contemp Dent Pract. 2011;12(2):114-119.  https://doi.org/10.5005/jp-journals-10024-1019
  65. Blood-Sampling-Guidelines.pdf. Accessed June 27, 2022. https://www.partners.org/Assets/Documents/Medical-Research/Clinical-Research/Blood-Sampling-Guidelines.pdf
  66. Sivakova OV, Pokrovskaya MS, Metelskaya VA, et al. International rules for description of biospecimens are an important factor in improving the quality of researches. Russian Journal of Preventive Medicine. 2019;22(6):95.  https://doi.org/10.17116/profmed20192206295
  67. Kit OI, Timofeeva SV, Sitkovskaya AO, et al. The biobank of the National Medical Research Centre for Oncology as a resource for research in the field of personalized medicine. J Mod Oncol. 2022;24(1):6-11.  https://doi.org/10.26442/18151434.2022.1.201384
  68. Sorokina AG, Orlova YA, Grigorieva OA, et al. Creation of a collection of different biological sample types from elderly patients to study the relationship of clinical, systemic, tissue and cellular biomarkers of accumulation of senescent cells during aging. Cardiovascular Therapy and Prevention. 2021;20(8):3051. (In Russ.). https://doi.org/10.15829/1728-8800-2021-3051
  69. Gnennaya NV, Timofeeva SV, Sitkovskaya AO, et al. Creation of a collection of blood samples of patients with multiple myeloma. Cardiovascular Therapy and Prevention. 2021;20(8):3043. (In Russ.). https://doi.org/10.15829/1728-8800-2021-3043
  70. Abdurasulova IN, Tarasova EA, Nikiforova IG, et al. The intestinal microbiota composition in patients with multiple sclerosis receiving different disease-modifying therapies DMT. S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(8-2):62-69. (In Russ.). https://doi.org/10.17116/jnevro201811808262
  71. Boĭko OV, Tatarinova MYu, Popova EV, et al. The improvement of quality of life of patients with multiple sclerosis over 15-year period. S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(8-2):23-28. (In Russ.). https://doi.org/10.17116/jnevro201811808223
  72. Popova EV, Boĭko AN, Barabanova MA, et al. Primary progressive multiple sclerosis: current issues of timely diagnosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(10-2):34-39. (In Russ.). https://doi.org/10.17116/jnevro201711710235-40
  73. Boĭko AN, Gusev EI. Current algorithms of diagnosis and treatment of multiple sclerosis based on the individual assessment of the patient. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(2-2):92-106. (In Russ.). https://doi.org/10.17116/jnevro20171172292-106
  74. Boyko AN, Melnikov MV, Boyko OV, et al. Microbiota markers level in the cerebrospinal fluid of patients with multiple sclerosis and radiologically isolated syndrome. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(1S):27-30. (In Russ.). https://doi.org/10.14412/2074-2711-2021-1S-27-30
  75. Sadekov TSh, Boyko AN, Omarova MA, et al. Evaluation of the structure of the human microbiome in multiple sclerosis by the concentrations of microbial markers in the blood. Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory Diagnostics). 2022;67(10):600-606 (In Russ.). https://doi.org/10.51620/0869-2084-2022-67-10-600-606
  76. Moshnikova AN, Maksimchuk VK, Lapin SV, et al. Diagnostic significance of intrathecally synthesized immunoglobulins against neurotropic viruses (MRZ-reaction) in diagnosis of multiple sclerosis. Infection and Immunity. 2019;9(5-6):703-712. (In Russ.). https://doi.org/10.15789/2220-7619-2019-5-6-703-712
  77. Makshakov GS, Nazarov VD, Totolyan NA, et al. The association of intrathecal production of immunoglobulin free light chains and progression of multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(10):4-10. (In Russ.). https://doi.org/10.17116/jnevro20171171024-10
  78. Electronic database of patients with demyelinating diseases. Accessed July 30, 2022. Accessed July 30, 2022. (In Russ.). https://rosmed.info/project?id=52

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.