The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Vladimirsky V.E.

Wagner Perm State Medical University

Vladimirsky E.V.

Wagner Perm State Medical University

Lunina A.N.

Wagner Perm State Medical University

Fesyun A.D.

National Medical Research Centre for Rehabilitation and Balneology

Rachin A.P.

National Research Medical Center for Rehabilitation and Balneology

Lebedeva O.D.

National Medical Research Center for Rehabilitation and Balneology

Yakovlev M.Yu.

National Medical Research Center for Rehabilitation and Balneology

Tubekova M.A.

Pulmonology Research Institute of Federal Medico — Biological Agency

Molecular mechanisms of adaptive and therapeutic effects of physical activity in patients with cardiovascular diseases

Authors:

Vladimirsky V.E., Vladimirsky E.V., Lunina A.N., Fesyun A.D., Rachin A.P., Lebedeva O.D., Yakovlev M.Yu., Tubekova M.A.

More about the authors

Read: 2127 times


To cite this article:

Vladimirsky VE, Vladimirsky EV, Lunina AN, et al. . Molecular mechanisms of adaptive and therapeutic effects of physical activity in patients with cardiovascular diseases. Problems of Balneology, Physiotherapy and Exercise Therapy. 2022;99(2):69‑77. (In Russ.)
https://doi.org/10.17116/kurort20229902169

Recommended articles:
The significance of exogenous nitrate and nitrite of plant origin for vascular health. Russian Journal of Preventive Medi­cine. 2024;(11):141-146
Psoriasis: analysis of como­rbid pathology. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(1):16-21

References:

  1. Thomas RJ, King M, Lui K, et al. AACVPR/ACC/AHA 2007 Heart Rehabilitation performance indicators for the referral and provision of heart rehabilitation/secondary prevention services. J Cardiopulm Rehabil Prev. 2007;27:260-290. 
  2. Giannuzzi P, Saner H, Björnstad H, et al. Secondary prevention through cardiological rehabilitation: a paper outlining the position of the Working Group on Cardiac Rehabilitation and Exercise Physiology of the European Society of Cardiology. Eur Heart J. 2003;24:1273-1278.
  3. Piepoli MF, Corrà U, Benzer W, et al. Secondary prevention through cardiac rehabilitation: from knowledge to implementation. A document outlining the position of the Cardiological Rehabilitation Section of the European Association for the Prevention of Cardiovascular Diseases and Rehabilitation. Eur J Cardiovasc Previous rehabilitation. 2010;17:1-17. 
  4. Ismailov IS, Mamedyarova IA, Baranov AV, Mustafaev RD, Lebedeva OD, Achilov AA. Combined use of kineso-and laser therapy in the correction of regional hemodynamic disorders in dilated cardiomyopathy. Problems of Balneology, Physiotherapy, and Exercise Therapy. 2020;97(5):13-21. (In Russ.). https://doi.org/10.17116/kurort20209705113
  5. Corbalan R, Bassand JP, Illingworth L, Kayani G, Pieper KS, Ambrosio G, Camm AJ, Fitzmaurice DA, Fox KAA, Goldhaber SZ, Goto S, Haas S, Mantovani LG, Misselwitz F, Turpie AGG, Verheugt FWA, Kakkar AK, Hacke W, Gersh BJ, Luciardi HL. et al. Analysis of outcomes in ischemic vs nonischemic cardiomyopathy in patients with atrial fibrillation: A report from the garfield-af registry. JAMA Cardiology. 2019;4(6):526-548.  https://doi.org/10.1001/jamacardio.2018.4729
  6. Haas S, Cate HT, Accetta G, Bassand JP, Kayani G, Kakkar AK, Angchaisuksiri P, John Camm A, Corbalan R, Darius H, Fitzmaurice DA, Goldhaber SZ, Goto S, Jacobson B, Mantovani LG, Misselwitz F, Eickels MV, Pieper K, Schellong SM, Stepinska J, et al. Quality of vitamin k antagonist control and 1-year outcomes in patients with atrial fibrillation: A global perspective from the garfield-af registry. PLoS One. 2016;11(10):e0164076. https://doi.org/10.1371/journal.pone.0164076
  7. Sawhney JP, Kothiwale VA, Bisne V, Durgaprasad R, Vanajakshamma V, Jadhav P, Chopda M, Meena R, Vijayaraghavan G, Chawla K, Allu J, Pieper KS, Kakkar AK, John Camm A, Bassand JP, Fitzmaurice DA, Goldhaber SZ, Goto S, Haas S, Hacke W, et al. Risk Profiles and One-Year Outcomes of Patients with Newly Diagnosed Atrial Fibrillation in India: Insights from the Garfield-Af Registry. Indian Heart Journal. 2018;70(6):828-835.  https://doi.org/10.1016/j.ihj.2018.09.001
  8. Dmitriev VK, Radzievsky SA, Fisenko LA, Alekseev VV, Lebedeva OD. Cerebral-vegetative aspects of labile hypertension. Cardiology. 1988;12:20-23. (In Russ.).
  9. Nikiforova TI, Lebedeva OD, Rykov SV, Belov AS. Modern complex technologies of rehabilitation and prevention in patients with arterial hypertension. Problems of Balneology, Physiotherapy, and Exercise Therapy. 2013;90(6):52-58. (In Russ.).
  10. Ehrman JK, Gordon PM, Visich PS, Keteyian SJ. Clinical exercise phisiology. 1st edn. Champaign, IL: Human Kinetics; 2003.
  11. Jardins T. Cardiopulmonary anatomy & physiology essentials for respiratory care. 4th edn. Clifton Park, NY: Thomson Delmar Learning; 2002.
  12. McArdle WD, Katch VL. Exercise physiology: energy, nutrition and performance. 3rd edn. Rio de Janeiro, RJ: Guanabara Koogan; 1992.
  13. Levine S, Weiser P, Gillen J. Evaluation of a ventilatory muscle endurance training program in the rehabilitation of patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1986;133:400-406. 
  14. Sullivan MJ, Higginbotham MB, Cobb FR. Increased exercise ventilation in patients with chronic heart failure: intact ventilatory control despite hemodynamic and pulmonary abnormalities. Circulation. 1988;77:552-559. 
  15. Mancini DM, Henson D, La Manca J, Donchez L, Levine S. Benefit of selective respiratory muscle training on exercise capacity in patients with chronic congestive heart failure. Circulation. 1995;91:320-329. 
  16. Che L, Li D. The effects of exercise on cardiovascular biomarkers: new Insights, recent data, and applications. Adv Exp Med Biol. 2017;999:43-53.  https://doi.org/10.1007/978-981-10-4307-9
  17. Stanford KI, Goodyear LJ. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ. 2014;38:308-314.  https://doi.org/10.1152/advan.00080.2014
  18. Nystoriak MA, Bhatnagar A. Cardiovascular Effects and Benefits of Exercise. Front Cardiovasc Med. 2018;5:135.  https://doi.org/10.3389/fcvm.2018.00135
  19. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162-184.  https://doi.org/10.1016/j.cmet.2012.12.012
  20. Slentz CA, Bateman LA, Willis LH, Granville EO, Piner LW, Samsa GP, et al. Effects of exercise training alone vs. a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: A randomised controlled trial. Diabetologia. 2016;59:2088-2098. https://doi.org/10.1007/s00125-016-4051-z
  21. Conn VS, Koopman RJ, Ruppar TM, Phillips LJ, Mehr DR, Hafdahl AR. Insulin sensitivity following exercise interventions: systematic review and meta-analysis of outcomes among healthy adults. J Prim Care Community Health. 2014;5:211-222.  https://doi.org/10.1177/2150131913520328
  22. Lin X, Zhang X, Guo J, Roberts CK, McKenzie S, Wu WC, et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2015;4:e002014. https://doi.org/10.1161/JAHA.115.002014
  23. Ruderman NB, Park H, Kaushik VK, Dean D, Constant S, Prentki M, et al. AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise. Acta Physiol Scand. 2003;178:435-442.  https://doi.org/10.1046/j.1365-201X.2003.01164.x
  24. Petridou A, Nikolaidis MG, Matsakas A, Schulz T, Michna H, Mougios V. Effect of exercise training on the fatty acid composition of lipid classes in rat liver, skeletal muscle, and adipose tissue. Eur J Appl Physiol. 2005;94:84-92.  https://doi.org/10.1007/s00421-004-1294-z
  25. Hambrecht R, Adams V, Erbs S, Linke A, Krankel N, Shu Y, et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation. 2003;107:3152-3158. https://doi.org/10.1161/01.CIR.0000074229.93804.5C
  26. Leung FP, Yung LM, Laher I, Yao XQ, Chen ZY, Huang Y. Exercise, vascular wall and cardiovascular diseases an update (Part 1). Sports Med. 2008;38:1009-1024. https://doi.org/10.2165/00007256-200838120-00005
  27. Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology. 2013;28:330-358.  https://doi.org/10.1152/physiol.00019.2013
  28. Davis ME, Cai H, McCann L, Fukai T, Harrison DG. Role of c-Src in regulation of endothelial nitric oxide synthase expression during exercise training. Am J Physiol-Heart C. 2003;284:1449-1453. https://doi.org/10.1152/ajpheart.00918.2002
  29. Platt C, Houstis N, Rosenzweig A. Using exercise to measure and modify cardiac function. Cell Metab. 2015;21:227-236.  https://doi.org/10.1016/j.cmet.2015.01.014
  30. Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metab. 2017;25:1012-1026. https://doi.org/10.1016/j.cmet.2017.04.025
  31. Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. Am J Physiol-Heart C. 2012;302:10-23.  https://doi.org/10.1152/ajpheart.00574.2011
  32. Fontana L. Interventions to promote cardiometabolic health and slow cardiovascular ageing. Nat Rev Cardiol. 2018;15:566-577.  https://doi.org/10.1038/s41569-018-0026-8
  33. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88:1009-1086. https://doi.org/10.1152/physrev.00045.2006
  34. Gaesser GA, Angadi SS, Sawyer BJ. Exercise and diet, independent of weight loss, improve cardiometabolic risk profile in overweight and obese individuals. Physician Sportsmed. 2011;39:87-97.  https://doi.org/10.3810/psm.2011.05.1898
  35. Church TS, Blair SN, Cocreham S, Johannsen N, Johnson W, Kramer K, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2010;304:2253-2262. https://doi.org/10.1001/jama.2010.1710
  36. Sigal RJ, Kenny GP, Boule NG, Wells GA, Prud’homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes — A Randomized trial. Ann Inter Med. 2007;147:357-369.  https://doi.org/10.7326/0003-4819-147-6-200709180-00005
  37. Swift DL, Earnest CP, Blair SN, Church TS. The effect of different doses of aerobic exercise training on endothelial function in postmenopausal women with elevated blood pressure: results from the DREW study. Br J Sport Med. 2012;46:753-758.  https://doi.org/10.1136/bjsports-2011-090025
  38. Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46:667-675.  https://doi.org/10.1161/01.HYP.0000184225.05629.51
  39. Kodama S, Tanaka S, Saito K, Shu M, Sone Y, Onitake F, et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol — A meta-analysis. Arch Inter Med. 2007;167:999-1008. https://doi.org/10.1001/archinte.167.10.999
  40. Swift DL, Johannsen NM, Lavie CJ, Earnest CP, Church TS. The role of exercise and physical activity in weight loss and maintenance. Progr Cardiovasc Dis. 2014;56:441-447.  https://doi.org/10.1016/j.pcad.2013.09.012
  41. Fontana L, Villareal DT, Weiss EP, Racette SB, Steger-May K, Klein S, et al. Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial. Am J Physiol Endocrinol Metab. 2007;293:197-202.  https://doi.org/10.1152/ajpendo.00102.2007
  42. Duscha BD, Slentz CA, Johnson JL, Houmard JA, Bensimhon DR, Knetzger KJ, et al. Effects of exercise training amount and intensity on peak oxygen consumption in middle-age men and women at risk for cardiovascular disease. Chest. 2005;128:2788-2793. https://doi.org/10.1378/chest.128.4.2788
  43. Platt C, Houstis N, Rosenzweig A. Using exercise to measure and modify cardiac function. Cell Metab. 2015;21:227-236.  https://doi.org/10.1016/j.cmet.2015.01.014
  44. Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metab. 2017;25:1012-1026. https://doi.org/10.1016/j.cmet.2017.04.025
  45. Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative biology of exercise. Cell. 2014;159:738-749.  https://doi.org/10.1016/j.cell.2014.10.029
  46. Stanford KI, R.Middelbeek JW, Townsend KL, Lee MY, Takahashi H, So K, et al. A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes. 2015;64:2002-2014. https://doi.org/10.2337/db14-0704
  47. Stanford KI, Goodyear LJ. Exercise regulation of adipose tissue. Adipocyte. 2016;5:153-162.  https://doi.org/10.1080/21623945.2016.1191307
  48. Lundby C, Jacobs RA. Adaptations of skeletal muscle mitochondria to exercise training. Exp Physiol. 2016;101:17-22.  https://doi.org/10.1113/EP085319
  49. Riehle C, Wende AR, Zhu Y, Oliveira KJ, Pereira RO, Jaishy BP, et al. Insulin receptor substrates are essential for the bioenergetic and hypertrophic response of the heart to exercise training. Mol Cell Biol. 2014;34:3450-3460. https://doi.org/10.1128/MCB.00426-14
  50. Vettor R, Valerio A, Ragni M, Trevellin E, Granzotto M, Olivieri M, et al. Exercise training boosts eNOS-dependent mitochondrial biogenesis in mouse heart: role in adaptation of glucose metabolism. Am J Physiol Endocrinol Metab. 2014;306:519-528.  https://doi.org/10.1152/ajpendo.00617.2013
  51. Borges JP, da Silva Verdoorn K. Cardiac ischemia/reperfusion injury: The beneficial effects of exercise. Adv Exp Med Biol. 2017;999:155-179. 
  52. Sattelmair J, Pertman J, Ding EL, Kohl HW III, Haskell W, Lee IM. Dose response between physical activity and risk of coronary heart disease: A meta-analysis. Circulation. 2011;124:789-795.  https://doi.org/10.1161/CIRCULATIONAHA.110.010710
  53. Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers — A systematic review. J Am Coll Cardiol. 2005;45:1563-1569. https://doi.org/10.1016/j.jacc.2004.12.077
  54. Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem. 2012;287:11968-11980. https://doi.org/10.1074/jbc.M111.336834
  55. Oshima Y, Ouchi N, Sato K, Izumiya Y, Pimentel DR, Walsh K. Follistatin-like 1 is anAkt-regulated cardioprotective factor that is secreted by the heart. Circulation. 2008;117:3099-3108. https://doi.org/10.1161/CIRCULATIONAHA.108.767673
  56. Ogura Y, Ouchi N, Ohashi K, Shibata R, Kataoka Y, Kambara T, et al. Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation. 2012;126:1728-1738. https://doi.org/10.1161/CIRCULATIONAHA.112.115089
  57. Joki Y, Ohashi K, Yuasa D, Shibata R, Kataoka Y, Kambara T, et al. Neuron-derived neurotrophic factor ameliorates adverse cardiac remodeling after experimental myocardialinfarction. Circ-Heart Fail. 2015;8:342-351.  https://doi.org/10.1161/CIRCHEARTFAILURE.114.001647
  58. Irving BA, Lanza IR, Henderson GC, Rao RR, Spiegelman BM, Nair KS. Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. J Clin Endocrinol Metab. 2015;100:1654-1663. https://doi.org/10.1210/jc.2014-3081
  59. Konopka AR, Suer MK, Wolff CA, Harber MP. Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. J Gerontol A Biol Sci Med Sci. 2014;69:371-378.  https://doi.org/10.1093/gerona/glt107
  60. Vella CA, Ontiveros D, Zubia RY. Cardiac function and arteriovenous oxygen difference during exercise in obese adults. Eur J Appl Physiol. 2011;111:915-923.  https://doi.org/10.1007/s00421-010-1554-z
  61. Judge S, Jang YM, Smith A, Selman C, Phillips T, Speakman JR, et al. Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. Am J Physiol-Reg I. 2005;289:1564-1572. https://doi.org/10.1152/ajpregu.00396.2005
  62. Tao L, Bei Y, Zhang H, Xiao J, Li X. Exercise for the heart: signaling pathways. Oncotarget. 2015;6:20773-20784. https://doi.org/10.18632/oncotarget.4770
  63. Dufour CR, Wilson BJ, Huss JM, Kelly DP, Alaynick WA, Downes M, et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERR alpha and gamma. Cell Metab. 2007;5:345-356.  https://doi.org/10.1016/j.cmet.2007.03.007
  64. Tao L, Bei Y, Lin S, Zhang H, Zhou Y, Jiang J, et al. Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis. Cell Physiol Biochem. 2015;37:162-175.  https://doi.org/10.1159/000430342
  65. Ferreira R, Nogueira-Ferreira R, Trindade F, Vitorino R, Powers SK, Moreira-Goncalves D. Sugar or fat: The metabolic choice of the trained heart. Metabolism. 2018;87:98-104.  https://doi.org/10.1016/j.metabol.2018.07.004
  66. Kolwicz SC Jr. An exercise in cardiac metabolism. Front Cardiovasc Med. 2018;5:66.  https://doi.org/10.3389/fcvm.2018.00066
  67. Burelle Y, Wambolt RB, Grist M, Parsons HL, Chow JC, Antler C, et al. Regular exercise is associated with a protective metabolic phenotype in the rat heart. Am J Physiol Heart Circ Physiol. 2004;287:1055-1063. https://doi.org/10.1152/ajpheart.00925.2003
  68. Nisoli E, Clementi E, Carruba MO, Moncada S. Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res. 2007;100:795-806.  https://doi.org/10.1161/01.RES.0000259591.97107.6c
  69. Casademont J, Miro O. Electron transport chain defects in heart failure. Heart Fail Rev. 2002;7:131-139.  https://doi.org/10.1023/A:1015372407647
  70. Neubauer S. The failing heart — an engine out of fuel. N Engl J Med. 2007;356:1140-1151. https://doi.org/10.1056/NEJMra063052
  71. Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013;113:709-724.  https://doi.org/10.1161/CIRCRESAHA.113.300376
  72. Rosenblatt-Velin N, Montessuit C, Papageorgiou I, Terrand J, Lerch R. Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism. Cardiovasc Res. 2001;52:407-416.  https://doi.org/10.1016/S0008-6363(01)00393-5
  73. Velez M, Kohli S, Sabbah HN. Animal models of insulin resistance and heart failure. Heart Fail Rev. 2014;19:1-13.  https://doi.org/10.1007/s10741-013-9387-6
  74. Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation. 2007;116:434-448.  https://doi.org/10.1161/CIRCULATIONAHA.107.702795
  75. Abel ED, O’Shea KM, Ramasamy R. Insulin resistance: metabolic mechanisms and consequences in the heart. Arterioscler Thromb Vasc Biol. 2012;32:2068-2076. https://doi.org/10.1161/ATVBAHA.111.241984
  76. Bird SR, Hawley JA. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med. 2016;2:e000143. https://doi.org/10.1136/bmjsem-2016-000143
  77. Parra V, Verdejo HE, Iglewski M, Del Campo A, Troncoso R, Jones D, et al. Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFkappaB-Opa-1 signaling pathway. Diabetes. 2014;63:75-88.  https://doi.org/10.2337/db13-0340
  78. Riehle C, Abel ED. Insulin signaling and heart failure. Circ Res. 2016;118:1151-1169. https://doi.org/10.1161/CIRCRESAHA.116.306206
  79. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018;100:1-19.  https://doi.org/10.1016/j.vph.2017.05.005
  80. Bloomer RJ, Goldfarb AH, Wideman L, McKenzie MJ, Consitt LA. Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress. J Strength Cond Res. 2005;19:276-285.  https://doi.org/10.1519/00124278-200505000-00007
  81. Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008;44:153-159.  https://doi.org/10.1016/j.freeradbiomed.2007.01.029
  82. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229-317.  https://doi.org/10.1016/B978-0-12-394309-5.00006-7
  83. Hoier B, Hellsten Y. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation. 2014;21:301-314.  https://doi.org/10.1111/micc.12117
  84. Olver TD, Ferguson BS, Laughlin MH. Molecular mechanisms for exercise training-induced changes in vascular structure and function: skeletal muscle, cardiac muscle, and the brain. Prog Mol Biol Transl Sci. 2015;135:227-257.  https://doi.org/10.1016/bs.pmbts.2015.07.017
  85. Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology. 2013;28:330-358.  https://doi.org/10.1152/physiol.00019.2013
  86. Calvert JW, Condit ME, Aragon JP, Nicholson CK, Moody BF, Hood RL, et al. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res. 2011;108:1448-1458. https://doi.org/10.1161/CIRCRESAHA.111.241117
  87. Verhaar MC, Westerweel PE, van Zonneveld AJ, Rabelink TJ. Free radical production by dysfunctional eNOS. Heart. 2004;90:494-495.  https://doi.org/10.1136/hrt.2003.029405
  88. Prior BM, Yang HT, Terjung RL. What makes vessels grow with exercise training? J Appl Physiol. 2004;97:1119-1128. https://doi.org/10.1152/japplphysiol.00035.2004
  89. Leosco D, Rengo G, Iaccarino G, Golino L, Marchese M, Fortunato F, et al. Exercise promotes angiogenesis and improves beta-adrenergic receptor signalling in the post-ischaemic failing rat heart. Cardiovasc Res. 2008;78:385-394.  https://doi.org/10.1093/cvr/cvm109
  90. Hoier B, Hellsten Y. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation. 2014;21:301-314.  https://doi.org/10.1111/micc.12117
  91. Olver TD, Ferguson BS, Laughlin MH. Molecular mechanisms for exercise training-induced changes in vascular structure and function: skeletal muscle, cardiac muscle, and the brain. Prog Mol Biol Transl Sci. 2015;135:227-257.  https://doi.org/10.1016/bs.pmbts.2015.07.017
  92. Black MA, Cable NT, Thijssen DH, Green DJ. Impact of age, sex, and exercise on brachial artery flow-mediated dilatation. Am J Physiol Heart Circ Physiol. 2009;297:1109-1116. https://doi.org/10.1152/ajpheart.00226.2009
  93. Beavers KM, Brinkley TE, Nicklas BJ. Effect of exercise training on chronic inflammation. Clin Chim Acta. 2010;411:785-793.  https://doi.org/10.1016/j.cca.2010.02.069
  94. You T, Arsenis NC, Disanzo BL, Lamonte MJ. Effects of exercise training on chronic inflammation in obesity: current evidence and potential mechanisms. Sports Med. 2013;43:243-256.  https://doi.org/10.1007/s40279-013-0023-3
  95. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005;96:939-949.  https://doi.org/10.1161/01.RES.0000163635.62927.34
  96. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11:183-190.  https://doi.org/10.1038/nm1166
  97. Ehses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA, Maor-Cahn R, et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes. 2007;56:2356-2370. https://doi.org/10.2337/db06-1650
  98. Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest. 2017;127:43-54.  https://doi.org/10.1172/JCI88880
  99. Song MJ, Kim KH, Yoon JM, Kim JB. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun. 2006;346:739-745.  https://doi.org/10.1016/j.bbrc.2006.05.170
  100. Rogero MM, Calder PC. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018;10:e432. https://doi.org/10.3390/nu10040432
  101. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793-1801. https://doi.org/10.1172/JCI29069
  102. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415-445.  https://doi.org/10.1146/annurev-immunol-031210-101322
  103. Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23
  104. Liu HW, Chang SJ. Moderate exercise suppresses NF-kappaB signaling and activates the SIRT1-AMPK-PGC1alpha axis to attenuate muscle loss in diabetic db/db Mice. Front Physiol. 2018;9:636.  https://doi.org/10.3389/fphys.2018.00636
  105. Sriwijitkamol A, Christ-Roberts C, Berria R, Eagan P, Pratipanawatr T, DeFronzo RA, et al. Reduced skeletal muscle inhibitor of kappa B beta content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training — Reversal by exercise training. Diabetes. 2006;55:760-767.  https://doi.org/10.2337/diabetes.55.03.06.db05-0677
  106. Flynn MG, McFarlin BK, Markofski MM. The anti-inflammatory actions of exercise training. Am J Lifestyle Med. 2007;1:220-235.  https://doi.org/10.1177/1559827607300283
  107. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11:607-615.  https://doi.org/10.1038/nri3041
  108. Lancaster GI, Febbraio MA. The immunomodulating role of exercise in metabolic disease. Trends Immunol. 2014;35:262-269.  https://doi.org/10.1016/j.it.2014.02.008
  109. Vieira VJ, Valentine RJ, Wilund KR, Antao N, Baynard T, Woods JA. Effects of exercise and low-fat diet on adipose tissue inflammation and metabolic complications in obese mice. Am J Physiol Endocrinol Metab. 2009;296:1164-1171. https://doi.org/10.1152/ajpendo.00054.2009
  110. Cole JE, Georgiou E, Monaco C. The expression and functions of toll-like receptors in atherosclerosis. Mediators Inflamm. 2010;2010:393946. https://doi.org/10.1155/2010/393946
  111. McFarlin BK, Flynn MG, Campbell WW, Craig BA, Robinson JP, Stewart LK, et al. Physical activity status, but not age, influences inflammatory cytokine production and toll-like receptor 4. Med Sci Sport Exer. 2006;38:S308. https://doi.org/10.1249/00005768-200605001-02204
  112. Harutyunyan MJ, Mathiasen AB, Winkel P, Gotze JP, Hansen JF, Hildebrandt P, et al. High-sensitivity C-reactive protein and N-terminal pro-B-type natriuretic peptide in patients with stable coronary artery disease: A prognostic study within the CLARICOR Trial. Scand J Clin Lab Inv. 2011;71:52-62.  https://doi.org/10.3109/00365513.2010.538081
  113. Creber RMM, Lee CS, Margulies K, Ellis S, Riegel B. Exercise in heart failure and patterns of inflammation and myocardial stress over time. Circulation. 2014;130:A11902.
  114. Pedersen L, Hojman P. Muscle-to-organ cross talk mediated by myokines. Adipocyte. 2012;1:164-167.  https://doi.org/10.4161/adip.20344
  115. Hoffmann C, Weigert C. Skeletal muscle as an endocrine organ: The role of myokines in exercise adaptathions. Cold Spring Harb Perspect Med. 2017;7:a029793. https://doi.org/10.1101/cshperspect.a029793
  116. Neufer PD, Bamman MM, Muoio DM, Bouchard C, Cooper DM, Goodpaster BH, et al. Understanding the cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metab. 2015;22:4-11.  https://doi.org/10.1016/j.cmet.2015.05.011
  117. Pedersen BK. The diseasome of physical inactivity — and the role of myokines in muscle-fat cross talk. J Physiol-London. 2009;587:5559-5568. https://doi.org/10.1113/jphysiol.2009.179515
  118. Pedersen BK. Muscles and their myokines. J Exp Biol. 2011;214:337-346.  https://doi.org/10.1242/jeb.048074
  119. Schnyder S, Handschin C. Skeletal muscle as an endocrine organ: PGC-1alpha, myokines and exercise. Bone. 2015;80:115-125.  https://doi.org/10.1016/j.bone.2015.02.008
  120. Ahima RS, Park HK. Connecting Myokines and Metabolism. Endocrinol Metab. 2015;30:235-245.  https://doi.org/10.3803/EnM.2015.30.3.235
  121. Baskin KK, Winders BR, Olson EN. Muscle as a “mediator” of systemic metabolism. Cell Metab. 2015;21:237-248.  https://doi.org/10.1016/j.cmet.2014.12.021
  122. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8:457-465.  https://doi.org/10.1038/nrendo.2012.49
  123. Mathur N, Pedersen BK. Exercise as a mean to control low-grade systemic inflammation. Mediat Inflamm. 2008;2008:109502. https://doi.org/10.1155/2008/109502
  124. Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6-33. 
  125. Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med. 2011;17:1481-1489. https://doi.org/10.1038/nm.2513
  126. Van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab. 2003;88:3005-3010. https://doi.org/10.1210/jc.2002-021687
  127. Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes. 2006;55:2688-2697. https://doi.org/10.2337/db05-1404
  128. Keller C, Hellsten Y, Steensberg A, Pedersen BK. Differential regulation of IL-6 and TNF-alpha via calcineurin in human skeletal muscle cells. Cytokine. 2006;36:141-147.  https://doi.org/10.1016/j.cyto.2006.10.014
  129. Kleinbongard P, Heusch G, Schulz R. TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther. 2010;127:295-314.  https://doi.org/10.1016/j.pharmthera.2010.05.002
  130. Yuasa D, Ohashi K, Shibata R, Mizutani N, Kataoka Y, Kambara T, et al. C1q/TNF-related protein-1 functions to protect against acute ischemic injury in the heart. Faseb J. 2016;30:1065-1075. https://doi.org/10.1096/fj.15-279885
  131. Gorgens SW, Raschke S, Holven KB, Jensen J, Eckardt K, Eckel J. Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells. Arch Physiol Biochem. 2013;119:75-80.  https://doi.org/10.3109/13813455.2013.768270
  132. Xi Y, Gong DW, Tian ZJ. FSTL1 as a Potential mediator of exercise-induced cardioprotection in post-myocardial infarction rats. Sci Rep. 2016;6:32424. https://doi.org/10.1038/srep32424
  133. Gorgens SW, Raschke S, Holven KB, Jensen J, Eckardt K, Eckel J. Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells. Arch Physiol Biochem. 2013;119:75-80.  https://doi.org/10.3109/13813455.2013.768270
  134. Oshima Y, Ouchi N, Sato K, Izumiya Y, Pimentel DR, Walsh K. Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation. 2008;117:3099-3108. https://doi.org/10.1161/CIRCULATIONAHA.108.767673
  135. Ogura Y, Ouchi N, Ohashi K, Shibata R, Kataoka Y, Kambara T, et al. Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation. 2012;126:1728-1738. https://doi.org/10.1161/CIRCULATIONAHA.112.115089
  136. Maruyama S, Nakamura K, Papanicolaou KN, Sano S, Shimizu I, Asaumi Y, et al. Follistatin-like 1 promotes cardiac fibroblast activation and protects the heart from rupture. EMBO Mol Med. 2016;8:949-966.  https://doi.org/10.15252/emmm.201506151
  137. Matthews VB, Astrom MB, Chan MHS, Bruce CR, Krabbe KS, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52:1409-1418. https://doi.org/10.1007/s00125-009-1364-1
  138. Kuang XL, Zhao XM, Xu HF, Shi YY, Deng JB, Sun GT. Spatio-temporal expression of a novel neuron-derived neurotrophic factor (NDNF) in mouse brains during development. BMC Neurosci. 2010;11:137.  https://doi.org/10.1186/1471-2202-11-137
  139. Ouchi N, Ohashi K, Shibata R, Murohara T. Protective roles of adipocytokines and myokines in cardiovascular disease. Circ J. 2016;80:2073-2080. https://doi.org/10.1253/circj.CJ-16-0663
  140. Joki Y, Ohashi K, Yuasa D, Shibata R, Kataoka Y, Kambara T, et al. Neuron-derived neurotrophic factor ameliorates adverse cardiac remodeling after experimental myocardial infarction. Circ-Heart Fail. 2015;8:342-351.  https://doi.org/10.1161/CIRCHEARTFAILURE.114.001647
  141. Ohashi K, Enomoto T, Joki Y, Shibata R, Ogura Y, Kataoka Y, et al. Neuron-derived neurotrophic factor functions as a novel modulator that enhances endothelial cell function and revascularization processes. J Biol Chem. 2014;289:14132-14144. https://doi.org/10.1074/jbc.M114.555789
  142. Anderson, L, Thompson, DR, Oldridge, N, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2016;1:CD001800. https://doi.org/10.1002/14651858.CD001800.pub3

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.