The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Verbitsky E.V.

Southern Scientific Center of the Russian Academy of Sciences

Poluektov M.G.

Sechenov First Moscow State Medical University (Sechenov University)

Energy processes in the sleep—wake cycle

Authors:

Verbitsky E.V., Poluektov M.G.

More about the authors

Read: 959 times


To cite this article:

Verbitsky EV, Poluektov MG. Energy processes in the sleep—wake cycle. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(5‑2):8‑13. (In Russ.)
https://doi.org/10.17116/jnevro20251250528

Recommended articles:
Mole­cular mechanisms of acute disseminated ence­phalomyelitis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(7-2):7-11
Sleep deprivation and the deve­lopment of oxidative stress in animal models. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(3):124-129

References:

  1. Kryger M, Goldstein CA, Roth T, Dement W. Principles and practice ofsleep medicine. Seven Edition. Philadelphia, Elsevier. 2022.
  2. Ковальзон В.М. Нейробиология бодрствования и сна. M.: URSS. 2024.
  3. Kovalzon VM. Neurobiology wakefulness and sleep. M.: URSS. 2024. (In Russ.).
  4. Semianov A, Verkhratsky A. Astrocytic processes: from tripartite synapses to the active milieu. Trends Neurosci. 2021;44(10):781-792.  https://doi.org/10.1016/j.tins.2021.07.006
  5. Verbitsky EV. Transcription processes during sleep. Effektivnaya farmakoterapiya. 2023;19(77):106-109. (In Russ.).
  6. Verbitsky EV, Poluektov MG. Sleep regulation as a complex process. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(5-2):8-14. (In Russ.) https://doi.org/10.17116/jnevro20231230528
  7. Kogan AB. A comprehensive study of electrophysiological, histochemical and cytomorphological indicators of the excitability of brain neurons. Doklady AN SSSR. 1962;147(3):985-988. (In Russ.).
  8. Kogan AB, Fel’dman GL. Electrophysiological indicators of sleep in the cerebral cortex. V kn.: Mekhanizmy sna. L.: Nauka. 1971. (In Russ.).
  9. Kogan AB, Feldman GL, Gusatinski VN. Informational and metabolic processes in neurons of the cat cortex during sleep and wakefulness. Second Intern. Congress of Sleepresearch. Edinburgh: LPM. 1975;22-25. 
  10. Demin NN, Kogan AB, Moiseeva NI. Neurophysiology and neurochemistry of sleep. L.: Nauka. 1978. (In Russ.).
  11. Kogan AB, Feldman GL, Gusatinsky VB, et al. Levels of cytochemical, neuronal and systematic research in the neurobiology of sleep. Mat. of the 1 Intern. Symposium «Neurobiology of sleep». Tbilisi: Metsniereba. 1988;373-390. 
  12. Feldberg W, Sherwood SL. Injections of Drugs Into the Lateral Ventricle of the Cat. J Physiol. 1954;123:148-167.  https://doi.org/10.1113/jphysiol.1954.sp005040
  13. Benington JH, Heller HC. Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol. 1995;45:347-360.  https://doi.org/10.1016/0301-0082(94)00057-o
  14. Borbely AA, Achermann P. Sleep homeostasis and models of sleep regulation. J Biol Rhythms. 1999;14:557-568.  https://doi.org/10.1177/074873099129000894
  15. Scharf M, Naidoo N, Zimmerman J, Pack A. The energy hypothesis of sleep revisited. Prog Neurobiol. 2008;86(3):264-280.  https://doi.org/10.1016/j.pneurobio.2008.08.003
  16. Karnovsky ML, Reich P, Anchors JM, Burrows BL Changes in brain glycogen during slow-wave sleep in the rat. J Neurochem. 1983;41:1498-1501.
  17. Kong J, Shepel PN, Holden CP, et al. Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci. 2002;22:5581-5587.
  18. Dworak M, McCarley R, Kim T, et al. Sleep and Brain Energy Levels: ATP Changes during Sleep. J Neurosci. 2010;30(26):9007-9016. https://doi.org/10.1523/JNEUROSCI.1423-10.2010
  19. Dworak M, Diel P, Voss S, et al. Intense exercise increases adenosine concentrations in rat brain: implications for a homeostatic sleep drive. Neurosci. 2007;150:789-795. 
  20. Pascual O, Casper KB, Kubera C, et al. Astrocytic purinergic signaling coordinates synaptic networks. Science. 2005;310:113-116. 
  21. Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev. 2006;10(1):49-62.  https://doi.org/10.1016/j.smrv.2005.05.002
  22. Grubbs JJ, Lopes LE, van der Linden AM, Raizen DM. A salt-induced kinase is required for the metabolic regulation of sleep. PLoS Biol. 2020;18(4):e3000220. https://doi.org/10.1371/journal.pbio.3000220
  23. Yurgel ME, Masek P, DiAngelo J, Keene AC. Genetic dissection of sleep-metabolism interactions in the fruit fly. J Comparative Physiol. 2015;201(9):869-877.  https://doi.org/10.1007/s00359-014-0936-9
  24. Maguire SE, Rhoades S, Chen WF, et al. Independent Effects of gamma-Aminobutyric Acid Transaminase (GABAT) on Metabolic and Sleep Homeostasis. J Biol Chem. 2015;290(33):20407-20416.
  25. Miller MA, Kruisbrink M, Wallace J, et al. Sleep duration and incidence of obesity in infants, children, and adolescents: a systematic review and meta-analysis of prospective studies. Sleep. 2018;41(4):10.1093/sleep/zsy018. https://doi.org/10.1093/sleep/zsy018
  26. Urade Y, Hayaishi O, Matsumura H, Watanabe K. Molecular mechanism of sleep regulation by prostaglandin D2. J Lipid Mediat Cell Signal. 1996;14(1-3):71-82.  https://doi.org/10.1016/0929-7855(96)01511-8
  27. Ko A, Cantor RM, Weissglas-Volkov D, et al. Amerindian-specific regions under positive selection harbour new lipid variants in Latinos. Nature Comm. 2014;5:3983. https://doi.org/10.1038/ncomms4983
  28. Nowak N, Gaisl T, Miladinovic D, et al. Rapid and reversible control of human metabolism by individual sleep states. Cell Rep. 2021;37(4):109903. https://doi.org/10.1016/j.celrep.2021.109903
  29. Davies SK, Ang JE, Revell VL, et al. Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci USA. 2014;111(29):10761-10766. https://doi.org/10.1073/pnas.1402663111
  30. Verbitsky EV, Arapova YuYu. The role of cerebral activation in the sleep-waking cycle. J Neurosci Behav Physiol. 2024;54(7):1-5.  https://doi.org/10.1007/s11055-024-01694-8
  31. Vitacca M, Paneroni M, Braghiroli A, et al. Exercise capacity and comorbidities in patients with obstructive sleep apnea. J Clin Sleep Med. 2020;16(4):531-538.  https://doi.org/10.5664/jcsm.8258
  32. Powell TA, Morris MJ, Holley A. Does Untreated OSA Really Influence Exercise Tolerance? Chest. 2023;163(6):e288-e289. https://doi.org/10.1016/j.chest.2023.02.040
  33. Huang RJ, Lee SD, Lai CH, et al. Objectively Measured Disrupted Sleep Is Independently and Directly Associated With Low Exercise Capacity in Males: A Structural Equation Model. J Clin Sleep Med. 2018;14(12):1995-2004. https://doi.org/10.5664/jcsm.7522
  34. Riemann D, Espie CA, Altena E, et al. The European Insomnia Guideline: An update on the diagnosis and treatment of insomnia 2023. J Sleep Res. 2023;32(6):e14035. https://doi.org/10.1111/jsr.14035
  35. Donormil — instrukciya po primeneniyu, pobochnyeeffekty, dozy, analogi. Elektronnyj document. (In Russ.). Accessed on 26.02.25.  https://www.rlsnet.ru/drugs/donormil-1279
  36. De Crescenzo F, D’Alò GL, Ostinelli EG, et al. Comparative effects of pharmacological interventions for the acute and long-term management of insomnia disorder in adults: a systematic review and network meta-analysis. Lancet. 2022;400(10347):170-184.  https://doi.org/10.1016/S0140-6736(22)00878-9

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.