The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Pozdnyakov I.M.

Novosibirsk State Medical University;
Novosibirsk City Clinical Perinatal Centre

Shcherbakov V.I.

Federal Research Center for Fundamental and Experimental Medicine

Shirinskaya A.V.

Novosibirsk City Clinical Perinatal Centre

Redox regulation, eustress and distress in uncomplicated pregnancy and preeclampsia

Authors:

Pozdnyakov I.M., Shcherbakov V.I., Shirinskaya A.V.

More about the authors

Read: 1485 times


To cite this article:

Pozdnyakov IM, Shcherbakov VI, Shirinskaya AV. Redox regulation, eustress and distress in uncomplicated pregnancy and preeclampsia. Russian Bulletin of Obstetrician-Gynecologist. 2023;23(3):12‑18. (In Russ.)
https://doi.org/10.17116/rosakush20232303112

Recommended articles:
On mole­cular gene­tic predictors of preeclampsia. Russian Bulletin of Obstetrician-Gynecologist. 2024;(6):26-34
The level of hypo­xia-induced factor-1a and asso­ciated mole­cules in preeclampsia. Russian Bulletin of Obstetrician-Gynecologist. 2025;(1):5-10
Oxidative stress in the pathogenesis of chro­nic headache. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(10):35-40
Oxidative stress and antioxidant protection in diso­rders of cere­bral circulation. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):114-119

References:

  1. Sanchez-Aranguren LC, Prada CE, Riano-Medina CE, Lopez M. Endothelial dysfunction and preeclampsia:role of oxidative stress. Front Physiol. 2014;5:372.  https://doi.org/10.3389/fphys.2014.00372
  2. Vishnyakova PA, Kan NE, Khodzhaeva ZS, Vysokikh MYu. Mitokhondrii platsenty v norme i pri preeklampsii. Akusherstvo i ginekologiya. 2017;5:5-8. (In Russ.). https://doi.org/10.18565/aig.2017.5.5-8
  3. Herb M, Schramm M. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants (Basel). 2021;10:2:313.  https://doi.org/10.3390/antiox10020313
  4. Wang H, Schoebel S, Schmitz F, Dong H, Hedfalk K. Characterization of aquaporin-dreiven hydrogen peroxide transport. Biochim Biophys Acta Biomembr. 2020;1862:183065. https://doi.org/10.1016/j.bbamem.2019.183065
  5. Poole LB. The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med. 2015;80:148-157.  https://doi.org/10.1016/j.freeradbiomed.2014.11.013
  6. Zhou L, Yeo AT, Ballarano C, Weber U, Allen KN, Gilmore TD, Whitty A. Disulfide-mediated stabilization of the I kappa B kinase binding domain of NF-kappa B essential modulator (nemo). Biochemistry. 2014;53:7929-7944. https://doi.org/10.1021/bi500920n
  7. Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med. 2008;45:549-561.  https://doi.org/10.1016/j.freeradbiomed.2008.05.004
  8. Lambeth JD, Kawahara T, Diebold B. Regulation of NOX and DUOX enzymatic activity and expression. Free Radic Biol Med. 2007;43:319-331.  https://doi.org/10.1016/j.freeradbiomed.2007.03.028
  9. Odobasic D, Kitching AR, Holdsworth SR. Neutrophil-mediated regulation of innate and adaptive immunity: The role of myeloperoxidase. J Immunol Res. 2016;2016:2349817. https://doi.org/10.1155/2016/2349817
  10. Dikalova AE, Gongora MC, Harrison DG, Lambeth JD, Dikalov S, Griendling KK. Upregulation of NOX1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J Physiol Heart Circ Physiol. 2010;299:673-679.  https://doi.org/10.1152/ajpheart.00242.2010
  11. Noubade R, Wong K, Ota N, Rutz S, Eidenschenk C, Valdez PA, Ding J, Peng I, Sebrell A, Caplazi P, DeVoss J, Soriano RH, Sai T, Lu R, Modrusan Z, Hackney J, Ouyang W. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature. 2014;509:235-239.  https://doi.org/10.1038/nature13152
  12. Bonini MG, Malik AB. Regulating the regulator of ROS production. Cell Res. 2014;24:8:908-909.  https://doi.org/10.1038/cr.2014.66
  13. Di A, Gao XP, Qian F, Kawamura T, Han J, Hecquet C, Ye RD, Vogel SM, Malik AB. The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat Immunol. 2011:13:29-34.  https://doi.org/10.1038/ni.2171
  14. Whitmore LC, Hilkin BM, Goss KL, Wahle EM, Colaizy TT, Boggiatto PM, Varga SM, Miller FJ, Moreland JG. Nox2 protects against prolonged inflammation, lung injury, and mortality following systemic insults. J Innate Immunol. 2013;6:565-580.  https://doi.org/10.1159/000347212
  15. Spencer NY, Engelhard JF. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies. Biochemistry. 2014;53:1551-1564. https://doi.org/10.1021/bi401719r
  16. Oakley FD, Abbott D, Engelhardt JF. Signaling components of redox active endosomes: the redoxosomes. Antioxid Redox Signal. 2009;11:1313-1333. https://doi.org/10.1089/ars.2008.2363
  17. Miller FJ, Filali M, Huss GJ, Stanic B, Chamseddine A, Barna TJ, Lamb FS. Cytokine activation of nuclear factor kB in vascular smooth muscle cells requires signaling endosomes containingNOX1 and CIC-3. Circ Res. 2007;101:663-671.  https://doi.org/10.1161/CIRCRESAHA.107.151076
  18. Li Q, Zhang Y, Marden JJ, Banfi B, Engelhardt JF. Endosomal NADPH oxidase regulates c-Src activation following hypoxia/reoxygenation injury. Biochem J. 2008;411:531-541.  https://doi.org/10.1042/BJ20071534
  19. Tejero J, Shiva S, Gladwin MT. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol Rev. 2019;99:1:311-379.  https://doi.org/10.1152/physrev.00036.2017
  20. Kelley EE, Khoo NK, Hundley NJ, Malik UZ, Freeman BA, Tarpey MM. Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med. 2010;48:4:493-498.  https://doi.org/10.1016/j.freeradbiomed.2009.11.012
  21. Shcherbakov VI, Pozdnyakov IM, Shirinskaya AV. Study of factors capable of inducing endothelial dysfunction in preeclampsia. Problemy reproduktsii. 2017;23:2:96-101. (In Russ.). https://doi.org/10.17116/repro201723296-101
  22. Poljsak B, Supu D, Milisav I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013:956792. https://doi.org/10.1155/2013/956792
  23. Holmgren A. Antioxidant function of thioredoxin and glutaredoxin system. Antioxid Redox Sygnal. 2000;2:811-820.  https://doi.org/10.1089/ars.2000.2.4-811
  24. Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homeostasis network. Free Radic Biol Med. 2016;95:27-42.  https://doi.org/10.1016/j.freeradbiomed.2016.02.028
  25. Alleva R, Tomasetti M, Battino M, Curatola G, Littarrun GP, Folkers K. The roles of coenzyme Q10 and vitamin E on the peroxidation of human low density lipoprotein subfractions. PNAS USA. 1995;92:9388-9391. https://doi.org/10.1073/pnas.92.20.9388
  26. Sies H. Oxidative eustress: on constant alert for redox homeostasis. Redox Biol. 2021;41:101867. https://doi.org/10.1016/j.redox.2021.101867
  27. Basu J, Bendek B, Agamasu E, Salafia CM, Mishra A, Benfield N, Patel R, Mikhail M. Placental oxidative status throughout normal gestation in women with uncomplicated pregnancies. Obstet Gynecol Int. 2015;2015:276095. https://doi.org/10.1155/2015/276095
  28. Mannaerts D, Faes E, Cos P, Briede JJ, Gyselaers W, Cornette J, Gorbanev Y, Bogaerts A, Spaanderman M, Craenenbroeck N.Ye.V, Jacquemin Y. Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PLoS One. 2018;13:9:e0202919. https://doi.org/10.1371/journal.pone.0202919
  29. Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017;11:613-619.  https://doi.org/10.1016/j.redox.2016.12.035
  30. Aris AK, Leblanc S, Ouellet A, Moutquin JM. Dual action of H2O2 on placental hCG secretion: Implications for oxidative stress in preeclampsia. Clin Biochem. 2007;40:94-97.  https://doi.org/10.1016/j.clinbiochem.2006.10.008
  31. Murata M, Fukushima K, Takao T, Seki H, Takeda S, Wake N. Oxidative stress produced by xanthine oxidase induces apoptosis in human extravillous trophoblast cells. J Reprod Dev. 2013;59:1:7-13.  https://doi.org/10.1262/jrd.2012-053
  32. Millar TM, Stevens CR, Benjamin N, Eisenthal R, Harrison R, Blake DR. Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions. FEBS Lett. 1998;427:2:225-228.  https://doi.org/10.1016/s0014-5793(98)00430-x
  33. Bir SC, Shen X, Kavanagh TJ, Kevil CG, Pattillo CB. Control of angiogenesis dictated by picomolar superoxide levels. Free Radic Biol Med. 2013;63:135-142.  https://doi.org/10.1016/j.freeradbiomed.2013.05.015
  34. Kim YW, Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood. 2014;123:5:625-631.  https://doi.org/10.1182/blood-2013-09-512749
  35. Chua CC, Hamdy RC, Chua BH. Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic Biol Med. 1998;25:8:891-897.  https://doi.org/10.1016/s0891-5849(98)00115-4
  36. West XZ, Malinin NL, Merkulova A.A, Tischenko M, Kerr BA, Borden EC, Podrez EA, Salomon RG, Byzova TV. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature. 2010;467:7318:972-976.  https://doi.org/10.1038/nature09421
  37. Nezu M, Souma T, Yu L, Sekine H, Takahashi N, Wei AZ, Ito S, Fukamizu A, Zsengeller SA, Suzuki N, Yamamoto M. Nrf2 inactivation enhances placental angiogenesis in a preeclampsia mouse model and improves maternal and fetal outcomes. Sci Signal. 2017;10:479:pii:eaam5711. https://doi.org/10.1126/scisignal.aam5711
  38. Zhang Y, Liang B, Meng F, Li H. Effects of Nrf-2 expression in trophoblast cells and vascular endothelial cells in preeclampsia. Am J Trans Res. 2021;13:3:1006-1021.
  39. Feng H, Wang L, Zhang G, Zhang Z, Guo W. Oxidative stress activated by Keap-1/Nrf2 signaling pathway in pathogenesis of preeclampsia. Int J Clin Exp Pathol. 2020;13:3:382-392. 
  40. Kweider N, Huppertz B, Wruck CJ, Beckmann R, Rath W, Pufe T, Kadyrov M. A role for Nrf2 in redox signaling of the invasive extravillous trophoblast in severe early onset IUGR associated with preeclampsia. Plos One. 2012;7:10:e47055. https://doi.org/10.1371/journal.pone.0047055
  41. Ooi BK, Goh BH, Yap WH. Oxidative stress in cardiovascular diseases:involvement of Nrf2 antioxidant redox signaling in macrophage foam cells formation. Int J Mol Sci. 2017;18:11:2336. https://doi.org/10.3390/ijms18112336
  42. Baumann M, Korner M, Huang X, Wenger F, Surbek D, Albrecht C. Placental ABCA1 and ABCG1 expression in gestational disease: pre-eclampsia affects ABCA1 levels in syncytiotrophoblasts. Placenta. 2013;34:1079-1086. https://doi.org/10.1016/j.placenta.2013.06.309
  43. Quijano C, Trujillo M, Castro L, Trostchansky A. Interplay between oxidant species and energy metabolism. Redox Biol. 2016;8:28-42.  https://doi.org/10.1016/j.redox.2015.11.010
  44. Hu XQ, Zhang L. Hypoxia and mitochondrial dysfunction in pregnancy complications. Antioxidants (Basel). 2021;10:3:405.  https://doi.org/10.3390/antiox10030405
  45. Mundal SB, Rakner JJ, Silva GB, Gierman LM, Austdal M, Basnet P, Elschot M, Bakke SS, Ostrop J, Thomsen LCV, Moses EK, Acharya G, Bjorge L, Iversen CC. Divergent regulation of decidual oxidative-stress response by NRF2 and KEAP1 in preeclampsia with and without fetal growth restriction. Int J Mol Sci. 2022;23:4:1966. https://doi.org/10.3390/ijms23041966

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.