Юсупов Ф.А.

Учреждение «Ошский государственный университет»

Юлдашев А.А.

Ошский государственный университет

Абдыкадыров М.Ш.

Ошский государственный университет

Юсупова Т.Ф.

Ошский государственный университет

Влияние мочевой кислоты на прогрессирование болезни Паркинсона: миф или реальность?

Авторы:

Юсупов Ф.А., Юлдашев А.А., Абдыкадыров М.Ш., Юсупова Т.Ф.

Подробнее об авторах

Прочитано: 595 раз


Как цитировать:

Юсупов Ф.А., Юлдашев А.А., Абдыкадыров М.Ш., Юсупова Т.Ф. Влияние мочевой кислоты на прогрессирование болезни Паркинсона: миф или реальность? Журнал неврологии и психиатрии им. С.С. Корсакова. 2025;125(7):7‑14.
Yusupov FA, Yuldashev AA, Abdykadyrov MSh, Yusupova TF. Effect of uric acid on the progression of Parkinson’s disease: Myth or reality$1 S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(7):7‑14. (In Russ.)
https://doi.org/10.17116/jnevro20251250717

Рекомендуем статьи по данной теме:
Диаг­нос­ти­ка и под­хо­ды к ле­че­нию си­ало­реи у па­ци­ен­тов с бо­лез­нью Пар­кин­со­на. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(10):29-34
Окис­ли­тель­ный стресс в па­то­ге­не­зе хро­ни­чес­кой го­лов­ной бо­ли. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(10):35-40
Ней­ро­хи­ми­чес­кие ме­ха­низ­мы воз­ник­но­ве­ния тре­мо­ра при бо­лез­ни Пар­кин­со­на. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(11):64-72
Ког­ни­тив­ные на­ру­ше­ния у па­ци­ен­тов с бо­лез­нью Пар­кин­со­на. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(11):81-90
Дис­фун­кция мо­че­во­го пу­зы­ря у па­ци­ен­тов с I—III ста­ди­ями бо­лез­ни Пар­кин­со­на. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(11):91-99
Пор­трет вра­ча с бо­лез­нью Пар­кин­со­на. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(12):160-164

Литература / References:

  1. Юсупов Ф.А., Юлдашев А.А., Нурматов Т.А. Биомаркеры ранней диагностики болезни Паркинсона. Бюллетень науки и практики. 2024;10(7):309-323.  https://doi.org/10.33619/2414-2948/104/33
  2. Seifar F, Dinasarapu AR, Jinnah HA. Uric Acid in Parkinson′s Disease: What Is the Connection? Movement Disorders, (2022). 37(11), 2173-2183. Portico. https://doi.org/10.1002/mds.29209
  3. Драпкина О.М., Мазуров В.И., Мартынов А.И. и др. Консенсус для врачей по ведению пациентов с бессимптомной гиперурикемией в общетерапевтической практике. Кардиоваскулярная терапия и профилактика. 2024;23(1):89-104.  https://doi.org/10.15829/1728-8800-2024-3737
  4. Grażyńska A, Adamczewska K, Antoniuk S, et al. The Influence of Serum Uric Acid Level on Non-Motor Symptoms Occurrence and Severity in Patients with Idiopathic Parkinson’s Disease and Atypical Parkinsonisms—A Systematic Review. Medicina. 2021;57(9):972.  https://doi.org/10.3390/medicina57090972
  5. Saito Y, Tanaka A, Node K, et al. Uric acid and cardiovascular disease: A clinical review. Journal of Cardiology. 2021;78(1):51-57.  https://doi.org/10.1016/j.jjcc.2020.12.013
  6. Borghi C, Agabiti-Rosei E, Johnson RJ, et al. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. European Journal of Internal Medicine. 2020;80:1-11.  https://doi.org/10.1016/j.ejim.2020.07.006
  7. Adomako E, Moe OW. Uric Acid and Urate in Urolithiasis: The Innocent Bystander, Instigator, and Perpetrator. Seminars in Nephrology. 2020;40(6):564-573.  https://doi.org/10.1016/j.semnephrol.2020.12.003
  8. Joosten LAB, Crişan TO, Bjornstad P, et al. Asymptomatic hyperuricaemia: a silent activator of the innate immune system. Nature Reviews Rheumatology. 2019;16(2):75-86.  https://doi.org/10.1038/s41584-019-0334-3
  9. Муркамилов И.Т., Айтбаев К.А., Фомин В.В. и др. Подагра и нефроцереброваскулярный риск. The Scientific Heritage. 2020;(56-2):32-39.  https://doi.org/10.24412/9215-0365-2020-56-2-32-39
  10. Rajan S, Kaas B. Parkinson’s Disease: Risk Factor Modification and Prevention. Seminars in neurology, 2022;42(5):626-638.  https://doi.org/10.1055/s-0042-1758780
  11. Shen, C, Guo Y, Luo W, et al. Serum Urate and the Risk of Parkinson’s Disease: Results From a Meta-Analysis. Canadian Journal of Neurological Sciences. Journal Canadien Des Sciences Neurologiques. 2013;40(1):73-79.  https://doi.org/10.1017/s0317167100012981
  12. Елисеев М.С., Желябина О.В., Насонов Е.Л. Мочевая кислота, когнитивные расстройства, нейродегенерация. Терапевтический архив. 2024;96(5):447-452.  https://doi.org/10.26442/00403660.2024.05.202698
  13. König IR, Greco FMD. Mendelian randomization: Progressing towards understanding causality. Annals of Neurology. 2018;84(2):176-177.  https://doi.org/10.1002/ana.25293
  14. Brown EG, Goldman SM, Tanner CM. Mendel and urate: Acid test or random noise? Parkinsonism & Related Disorders, 2018;53:1-3.  https://doi.org/10.1016/j.parkreldis.2018.08.005
  15. Головач И.Ю., Егудина Е.Д., Тер-Вартаньян С.Х. Бессимптомная гиперурикемия: тайные взаимосвязи, невидимые эффекты и потенциальные осложнения. Научно-практическая ревматология. 2020;58(6):725-733.  https://doi.org/10.47360/1995-4484-2020-725-733
  16. Kia DA, Noyce AJ, White J, et al. Mendelian randomization study shows no causal relationship between circulating urate levels and Parkinson’s disease. Annals of Neurology. 2018;84(2):191-199. Portico. https://doi.org/10.1002/ana.25294
  17. Kobylecki CJ, Nordestgaard BG, Afzal S. Plasma urate and risk of Parkinson’s disease: A mendelian randomization study. Annals of Neurology. 2018;84(2):178-190. Portico. https://doi.org/10.1002/ana.25292
  18. Coneys R, Storm CS, Kia DA, et al. Mendelian Randomisation Finds No Causal Association between Urate and Parkinson’s Disease Progression. Movement Disorders. 2021;36(9):2182-2187. Portico. https://doi.org/10.1002/mds.28662
  19. Желябина О.В., Елисеев М.С., Сосин Д.Н., Левин М.Е. Мочевая кислота и психические расстройства. РМЖ. Медицинское обозрение. 2023;7(7):460-466.  https://doi.org/10.32364/2587-6821-2023-7-7-9
  20. Елисеев М.С., Желябина О.В., Насонов Е.Л. Мочевая кислота, когнитивные расстройства, нейродегенерация. Терапевтический архив. 2024;96(5):447-452.  https://doi.org/10.26442/00403660.2024.05.202698
  21. Janciauskiene S. The Beneficial Effects of Antioxidants in Health and Diseases. Chronic obstructive pulmonary diseases (Miami, Fla.). 2020;7(3):182-202.  https://doi.org/10.15326/jcopdf.7.3.2019.0152
  22. Александрова Л.А. Статус глутатиона эритроцитов в клинической медицине: реальность и возможности. Ученые записки Первого Санкт-Петербургского государственного медицинского университета имени академика И.П. Павлова. 2024;31(2):19-27.  https://doi.org/10.24884/1607-4181-2024-31-2-19-27
  23. Ауэзова, Р.Ж., Доскалиев, А.Ж., Суров, В.К. и др. Эффективность внутривенного введения высоких доз витамина C при Herpes Zoster — текущее состояние вопроса. Нейрохирургия и неврология Казахстана. 2021;4(65):33-41.  https://doi.org/10.53498/24094498_2021_4_33
  24. Hershfield MS, Roberts LJ, Ganson NJ, et al. Treating gout with pegloticase, a PEGylated urate oxidase, provides insight into the importance of uric acid as an antioxidant in vivo. Proceedings of the National Academy of Sciences. 2010;107(32):14351-14356. https://doi.org/10.1073/pnas.1001072107
  25. Мазуров В.И., Гайдукова И.З., Фонтуренко А.Ю. и др. Клинико-иммунологические особенности сочетанного течения ревматоидного артрита и гиперурикемии. Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова. 2021;13(3):43-52.  https://doi.org/10.17816/mechnikov80731
  26. Елисеева М.Е., Елисеев М.С. Значение гиперурикемии в развитии заболеваний человека и методы ее коррекции. Доктор.Ру. 2019;2(157):47-54.  https://doi.org/10.31550/1727-2378-2019-157-2-47-54
  27. Елисеев М.С., Желябина О.В., Насонов Е.Л. Мочевая кислота, когнитивные расстройства, нейродегенерация. Терапевтический архив. 2024;5.  https://doi.org/10.26442/00403660.2024.05.202698
  28. Meoni S, Macerollo A, Moro E. Sex differences in movement disorders. Nature Reviews Neurology. 2020;16(2):84-96.  https://doi.org/10.1038/s41582-019-0294-x
  29. Конышко Н.А., Морозова Т.Е., Цурко В.В., Конышко Г.С. Гиперурикемия, подагра и патология пищеварительной системы: общие звенья патогенеза. Экспериментальная и клиническая гастроэнтерология. 2023;11(219):130-137.  https://doi.org/10.31146/1682-8658-ecg-219-11-130-137
  30. Юсупов, Ф.А., Юлдашев, А.А., Нурматов, Т.А. Биомаркеры ранней диагностики болезни Паркинсона. Бюллетень науки и практики. 2024;10(7):309-323.  https://doi.org/10.33619/2414-2948/104/33
  31. Гусякова О.А., Смирнов С.В., Кузнецова О.Ю. и др. Перспективные биохимические маркеры болезни Паркинсона. Вестник Российского государственного медицинского университета. 2023;(4):73-77.  https://doi.org/10.24075/brsmu.2023.030
  32. Bhattacharyya S, Bakshi R, Logan R, et al. Oral Inosine Persistently Elevates Plasma antioxidant capacity in Parkinson’s disease. Movement Disorders. 2016;31(3):417-421. Portico. https://doi.org/10.1002/mds.26483
  33. Руденко В.И., Демидко Ю.Л., Краев И.Г. Современные возможности патогенетического лечения пациентов с нарушениями пуринового обмена. Экспериментальная и клиническая урология. 2021;14(3):100-110.  https://doi.org/10.29188/2222-8543-2021-14-3-100-110
  34. Biaz A, Tazi S, Bouhsain S, et al. Fortuitous Discovery of Hereditary Xanthinuria. Clinical laboratory, 2020;66(10):10.7754/Clin.Lab.2020.200253. https://doi.org/10.7754/Clin.Lab.2020.200253
  35. Kubihal S, Goyal A, Singla R, Khadgawat R. Urolithiasis due to Hereditary Xanthinuria Type II: A Long-term Follow-up report. Indian pediatrics. 2020;57(5):468-469.  https://doi.org/10.1007/s13312-020-1825-7
  36. Sebesta I, Stiburkova B, Krijt J. Hereditary xanthinuria is not so rare disorder of purine metabolism. Nucleosides, Nucleotides and Nucleic Acids. 2018;37(6):324-328.  https://doi.org/10.1080/15257770.2018.1460478
  37. Nakayama A, Matsuo H, Ohtahara A, et al. Clinical practice guideline for renal hypouricemia (1st edition). Human Cell. 2019;32(2):83-87.  https://doi.org/10.1007/s13577-019-00239-3
  38. Koto R, Sato I, Kuwabara M, et al. Temporal trends in the prevalence and characteristics of hypouricaemia: a descriptive study of medical check-up and administrative claims data. Clinical Rheumatology. 2022;41(7):2113-2119. https://doi.org/10.1007/s10067-022-06071-9
  39. Jagannathan L, Cuddapah S, Costa M. Oxidative Stress Under Ambient and Physiological Oxygen Tension in Tissue Culture. Current Pharmacology Reports. 2016;2(2):64-72.  https://doi.org/10.1007/s40495-016-0050-5
  40. Macklin EA, Ascherio A, Schwarzschild MA. Effect of Urate-Elevating Inosine on Progression of Early Parkinson Disease—Reply. JAMA. 2022;327(1):85.  https://doi.org/10.1001/jama.2021.21011
  41. Frucht SJ. Effect of Urate-Elevating Inosine on Progression of Early Parkinson Disease. JAMA. 2022;327(1):85.  https://doi.org/10.1001/jama.2021.21008
  42. Schwarzschild MA, Macklin EA, Bakshi R, et al. Sex differences by design and outcome in the Safety of Urate Elevation in PD (SURE-PD) trial. Neurology. 2019;93(14). https://doi.org/10.1212/wnl.0000000000008194
  43. Macklin EA, Ascherio A, Schwarzschild MA. Effect of Urate-Elevating Inosine on Progression of Early Parkinson Disease—Reply. JAMA. 2022;327(1):85.  https://doi.org/10.1001/jama.2021.21011
  44. Watanabe H, Hattori T, Kume A, et al. Improved Parkinsons disease motor score in a single-arm open-label trial of febuxostat and inosine. Medicine 2020;99(35):e21576. https://doi.org/10.1097/md.0000000000021576
  45. Johnson TA, Jinnah HA, Kamatani N. Shortage of Cellular ATP as a Cause of Diseases and Strategies to Enhance ATP. Frontiers in Pharmacology. 2019;10.  https://doi.org/10.3389/fphar.2019.00098
  46. Rossmann MP, Dubois SM, Agarwal S, Zon LI. Mitochondrial function in development and disease. Disease models & mechanisms. 2021;14(6):dmm048912. https://doi.org/10.1242/dmm.048912
  47. Monzel AS, Enríquez JA, Picard M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nature metabolism. 2023;5(4):546-562.  https://doi.org/10.1038/s42255-023-00783-1
  48. Lin Y, Fan R, Hao Z, et al. The Association Between Physical Activity and Insulin Level Under Different Levels of Lipid Indices and Serum Uric Acid. Frontiers in physiology. 2022;13:809669. https://doi.org/10.3389/fphys.2022.809669
  49. Yazar T, Yazar HO, Zayimoğlu E, Çankaya S. Incidence of sarcopenia and dynapenia according to stage in patients with idiopathic Parkinson’s disease. Neurological Sciences. 2018;39(8):1415-1421. https://doi.org/10.1007/s10072-018-3439-6
  50. Drey M, Hasmann SE, Krenovsky J-P, et al. Associations between Early Markers of Parkinson’s Disease and Sarcopenia. Frontiers in Aging Neuroscience. 2017;9.  https://doi.org/10.3389/fnagi.2017.00053
  51. Alvim RO, Siqueira JH, Zaniqueli D, et al. Influence of muscle mass on the serum uric acid levels in children and adolescents. Nutrition, Metabolism and Cardiovascular Diseases. 2020;30(2):300-305.  https://doi.org/10.1016/j.numecd.2019.08.019
  52. Dong X, Tian H, He J, et al. Elevated Serum Uric Acid Is Associated with Greater Bone Mineral Density and Skeletal Muscle Mass in Middle-Aged and Older Adults. PLOS ONE. 2016;11(5):e0154692. https://doi.org/10.1371/journal.pone.0154692
  53. Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: risk factors and prevention. The Lancet Neurology. 2016;15(12):1257-1272. https://doi.org/10.1016/s1474-4422(16)30230-7
  54. Towiwat P, Li Z. The association of vitamin C, alcohol, coffee, tea, milk and yogurt with uric acid and gout. International Journal of Rheumatic Diseases. 2015;18(5):495-501. Portico. https://doi.org/10.1111/1756-185x.12622
  55. Kaneko K, Aoyagi Y, Fukuuchi T, et al. Total Purine and Purine Base Content of Common Foodstuffs for Facilitating Nutritional Therapy for Gout and Hyperuricemia. Biological and Pharmaceutical Bulletin. 2014;37(5):709-721.  https://doi.org/10.1248/bpb.b13-00967
  56. Syed AAS, Fahira A, Yang Q, et al. The Relationship between Alcohol Consumption and Gout: A Mendelian Randomization Study. Genes. 2022;13(4):557.  https://doi.org/10.3390/genes13040557
  57. Choi JWJ, Ford ES, Gao X, Choi HK. Sugar‐sweetened soft drinks, diet soft drinks, and serum uric acid level: The third national health and nutrition examination survey. Arthritis Care & Research. 2007;59(1):109-116. Portico. https://doi.org/10.1002/art.23245
  58. Muriel P, López-Sánchez P, Ramos-Tovar E. Fructose and the Liver. International journal of molecular sciences. 2021;22(13):6969. https://doi.org/10.3390/ijms22136969
  59. Heinzel S, Aho VTE, Suenkel U, et al. Retracted: Gut Microbiome Signatures of Risk and Prodromal Markers of Parkinson Disease. Annals of Neurology. 2020;88(2):320-331. Portico. https://doi.org/10.1002/ana.25788
  60. Liu X, Tong X, Zou Y, et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. Nature Genetics. 2022;54(1):52-61.  https://doi.org/10.1038/s41588-021-00968-y
  61. Sampat R, Young S, Rosen A, et al. Potential mechanisms for low uric acid in Parkinson disease. Journal of Neural Transmission. 2016;123(4):365-370.  https://doi.org/10.1007/s00702-015-1503-4

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.