The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Nikenina E.V.

Anokhin Research Institute of Normal Physiology;
Sechenov First Moscow State Medical University

Abramova A.Yu.

Anokhin Research Institute of Normal Physiology;
Evdokimov Moscow State University of Medicine and Dentistry

Pertsov S.S.

Anokhin Research Institute of Normal Physiology;
Evdokimov Moscow State University of Medicine and Dentistry

Neuroimmune aspects of acute inflammatory pain

Authors:

Nikenina E.V., Abramova A.Yu., Pertsov S.S.

More about the authors

Journal: Russian Journal of Pain. 2021;19(1): 56‑62

Read: 2073 times


To cite this article:

Nikenina EV, Abramova AYu, Pertsov SS. Neuroimmune aspects of acute inflammatory pain. Russian Journal of Pain. 2021;19(1):56‑62. (In Russ.)
https://doi.org/10.17116/pain20211901156

Recommended articles:
Perioperative prevention of bleeding in glaucoma surgery. Russian Annals of Ophthalmology. 2024;(5):118-124
Effi­cacy of alpha-glutamyl-tryptophan in the treatment of chro­nic atro­phic gastritis: case series. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):121-128
Neuropeptide Y and inflammatory indi­ces in women after repeated cesa­rean section. Russian Bulletin of Obstetrician-Gynecologist. 2024;(6):35-40
Anti­fungal immu­nity in patients with chro­nic rhinosinusitis with nasal polyps. Russian Bulletin of Otorhinolaryngology. 2024;(6):40-45
Functional cyto­kine redu­ndancy in pregnancy. Russian Journal of Human Reproduction. 2024;(6):73-80
The level of hypo­xia-induced factor-1a and asso­ciated mole­cules in preeclampsia. Russian Bulletin of Obstetrician-Gynecologist. 2025;(1):5-10

References:

  1. Loeser JD, Treede RD. The Kyoto protocol of IASP Basic Pain Terminology. Pain. 2008;137(3):473-477.  https://doi.org/10.1016/j.pain.2008.04.025
  2. Shubayev VI, Kato K, Myers RR. Cytokines in Pain. In: Kruger L, Light AR, editors. Translational Pain Research: From Mouse to Man. Boca Raton (FL): CRC Press/Taylor & Francis; 2010. Chapter 8.  https://www.ncbi.nlm.nih.gov/books/NBK57275
  3. Lee JY, Lee GJ, Lee PR, Won CH, Kim D, Kang Y, Oh SB. The analgesic effect of refeeding on acute and chronic inflammatory pain. Sci Rep. 2019;9(1):16873. https://doi.org/10.1038/s41598-019-53149-7
  4. Linley, J.E., Rose, K., Ooi, L. et al. Understanding inflammatory pain: ion channels contributing to acute and chronic nociception. Pflügers Arch — Eur J Physiol. 2010;459:657-669.  https://doi.org/10.1007/s00424-010-0784-6
  5. Kessler, W., Kirchhoff, C., Reeh, P.W. et al. Excitation of cutaneous afferent nerve endings in vitro by a combination of inflammatory mediators and conditioning effect of substance P. Exp Brain Res. 1992;91:467-476.  https://doi.org/10.1007/BF00227842
  6. Muley MM, Krustev E, McDougall JJ. Preclinical Assessment of Inflammatory Pain. CNS Neurosci Ther. 2016;22(2):88-101.  https://doi.org/10.1111/cns.12486
  7. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267-284.  https://doi.org/10.1016/j.cell.2009.09.028
  8. Dib-Hajj SD, Cummins TR, Black JA, Waxman SG. Sodium channels in normal and pathological pain. Annual Review of Neuroscience. 2010;33:325-347.  https://doi.org/10.1146/annurev-neuro-060909-153234
  9. Yakhno NN, Kukushkin ML. Pain: a practical guide for doctors. M.: Publishing house of RAMS; 2011. (In Russ.).
  10. Kukushkin ML, Khitrov NK. General pathology of pain. M.: Meditsina; 2004. (In Russ.).
  11. Abramov YuB. Immune aspects of central pain mechanisms. Pain. 2009;25(4):2-8. (In Russ.).
  12. Schlereth T, Birklein F. The Sympathetic Nervous System and Pain. Neuromol Med. 2008;10:141-147.  https://doi.org/10.1007/s12017-007-8018-6
  13. Abramova AYu, Pertsov SS. Lipopolysaccharides and nociperception. Russian Journal of Pain. 2014;2(43):30-38. (In Russ.).
  14. McMahon SB, La Russa F, Bennett DL. Crosstalk between the nociceptive and immune systems in host defence and disease. Nat Rev Neurosci. 2015;16(7):389-402.  https://doi.org/10.1038/nrn3946
  15. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267-284.  https://doi.org/10.1016/j.cell.2009.09.028
  16. Murphy K, Weaver C. Janeway’s Immunobiology. New York, Garland Science; 2017.
  17. Cook AD, Christensen AD, Tewari D, McMahon SB, Hamilton JA. Immune Cytokines and Their Receptors in Inflammatory Pain. Trends Immunol. 2018;39(3):240-255.  https://doi.org/10.1016/j.it.2017.12.003
  18. Baral P, Udit S, Chiu IM. Pain and immunity: implications for host defence. Nature Reviews Immunology. 2019;19:433-447.  https://doi.org/10.1038/s41577-019-0147-2
  19. Myers RR, Campana WM, Shubayev VI. The role of neuroinflammation in neuropathic pain: mechanisms and therapeutic targets. Drug Discov Today. 2006;11(1-2):8-20.  https://doi.org/10.1016/S1359-6446(05)03637-8
  20. Alessandri-Haber N, Dina OA, Joseph EK, Reichling D, Levine JD. A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J Neurosci. 2006;26(14):3864-3874. https://doi.org/10.1523/JNEUROSCI.5385-05.2006
  21. Wood JN, et al. Voltage-gated sodium channels and pain pathways. J Neurobiol. 2004;61:55-71.  https://doi.org/10.1002/neu.20094
  22. Sekiguchi F, Tsubota M, Kawabata A. Involvement of Voltage-Gated Calcium Channels in Inflammation and Inflammatory Pain. Biol Pharm Bull. 2018;41(8):1127-1134. https://doi.org/10.1248/bpb.b18-00054
  23. Park CK, Xu ZZ, Berta T, Han Q, Chen G, Liu XJ, Ji RR. Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron. 2014;82(1):47-54.  https://doi.org/10.1016/j.neuron.2014.02.011
  24. Pinho-Ribeiro FA, Verri WA Jr, Chiu IM. Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation. Trends Immunol. 2017;38(1):5-19.  https://doi.org/10.1016/j.it.2016.10.001
  25. Raoof R, Willemen HLDM, Eijkelkamp N. Divergent roles of immune cells and their mediators in pain. Rheumatology (Oxford). 2018;57(3):429-440.  https://doi.org/10.1093/rheumatology/kex308
  26. Cunha TM, et al. Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J Leukoc Biol. 2008;83:824-832.  https://doi.org/10.1189/jlb.0907654
  27. Cao DL, Qian B, Zhang ZJ, Gao YJ, Wu XB. Chemokine receptor CXCR2 in dorsal root ganglion contributes to the maintenance of inflammatory pain. Brain Research Bulletin. 2016;127:219-225.  https://doi.org/10.1016/j.brainresbull.2016.09.016
  28. Binshtok AM, et al. Nociceptors are interleukin-1beta sensors. J Neurosci. 2008;28:14062-14073. https://doi.org/10.1523/JNEUROSCI.3795-08.2008
  29. Ebbinghaus M, et al. The role of interleukin-1β in arthritic pain: main involvement in thermal, but not mechanical, hyperalgesia in rat antigen-induced arthritis. Arthritis Rheum. 2012;64:3897-3907. https://doi.org/10.1002/art.34675
  30. Cunha FQ, et al. The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol. 1992;107:660-664.  https://doi.org/10.1111/j.1476-5381.1992.tb14503.x
  31. Malsch P, et al. Deletion of interleukin-6 signal transducer gp130 in small sensory neurons attenuates mechanonociception and down-regulates TRPA1 expression. J Neurosci. 2014;34:9845-9856. https://doi.org/10.1523/JNEUROSCI.5161-13.2014
  32. Fang D, et al. Interleukin-6-mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: roles in the development of bone cancer pain in a rat model. Pain. 2015;156:1124-1144. https://doi.org/10.1097/j.pain.0000000000000158
  33. Cunha TM, et al. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci USA. 2005;102:1755-1760. https://doi.org/10.1073/pnas.0409225102
  34. Jin X, Gereau RW 4th. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J Neurosci. 2006;26(1):246-255.  https://doi.org/10.1523/JNEUROSCI.3858-05.2006
  35. Gudes S, et al. The role of slow and persistent TTX-resistant sodium currents in acute tumor necrosis factor-α-mediated increase in nociceptors excitability. J Neurophysiol. 2015;113:601-619.  https://doi.org/10.1152/jn.00652.2014
  36. Sorkin LS, Doom CM. Epineurial application of TNF elicits an acute mechanical hyperalgesia in the awake rat. J Peripher Nerv Syst. 2000;5:96-100.  https://doi.org/10.1046/j.1529-8027.2000.00012.x
  37. Richter F, Natura G, Ebbinghaus M, von Banchet GS, Hensellek S, König C, Bräuer R, Schaible HG. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum. 2012;64(12):4125-4134. https://doi.org/10.1002/art.37695
  38. Shen KF, Zhu HQ, Wei XH, Wang J, Li YY, Pang RP, Liu XG. Interleukin-10 down-regulates voltage gated sodium channels in rat dorsal root ganglion neurons. Exp Neurol. 2013;247:466-475.  https://doi.org/10.1016/j.expneurol.2013.01.018
  39. Eskander MA, et al. Persistent Nociception Triggered by Nerve Growth Factor (NGF) Is Mediated by TRPV1 and Oxidative Mechanisms. J Neurosci. 2015;35:8593-8603. https://doi.org/10.1523/JNEUROSCI.3993-14.2015
  40. Zhang X, et al. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 2005;24:4211-4223. https://doi.org/10.1038/sj.emboj.7600893
  41. Ro LS, et al. Effect of NGF and anti-NGF on neuropathic pain in rats following chronic constriction injury of the sciatic nerve. Pain. 1999;79:265-274.  https://doi.org/10.1016/S0304-3959(98)00164-X
  42. Tang X-Q, et al. Semaphorin3A inhibits nerve growth factor-induced sprouting of nociceptive afferents in adult rat spinal cord. J Neurosci. 2004;24:819-827.  https://doi.org/10.1523/JNEUROSCI.1263-03.2004
  43. Perin-Martins A, et al. Mechanisms underlying transient receptor potential ankyrin 1 (TRPA1)-mediated hyperalgesia and edema. J Peripher Nerv Syst. 2013;18:62-74.  https://doi.org/10.1111/jns5.12010
  44. Massaad CA, et al. Involvement of substance P, CGRP and histamine in the hyperalgesia and cytokine upregulation induced by intraplantar injection of capsaicin in rats. J Neuroimmunol. 2004;153:171-182.  https://doi.org/10.1016/j.jneuroim.2004.05.007
  45. Parada CA, et al. The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception. Neuroscience. 2001;102:937-944.  https://doi.org/10.1016/S0306-4522(00)00523-6
  46. Qiu F, et al. Potentiation of acid-sensing ion channel activity by the activation of 5-HT2 receptors in rat dorsal root ganglion neurons. Neuropharmacology. 2012;63:494-500.  https://doi.org/10.1016/j.neuropharm.2012.04.034
  47. Abramova AYu, Pertsov SS. Correlation Dependencies between Nociceptive Sensitivity and Cytokine Level in Biological Fluids of Rats after Administration of Lipopolysaccharide. Byulleten’ eksperimental’noj biologii i meditsiny. 2014;157:539-544. (In Russ.). https://doi.org/10.1007/s10517-014-2609-7
  48. De Oliveira CM, Sakata RK, Issy AM, Gerola LR, Salomão R. Cytokines and pain. Rev Bras Anestesiol. 2011;61(2):255-259.  https://doi.org/10.1016/S0034-7094(11)70029-0
  49. Andersson U, Tracey KJ. Reflex principles of immunological homeostasis. Annu Rev Immunol. 2012;30:313-335.  https://doi.org/10.1146/annurev-immunol-020711-075015
  50. Brain SD, Williams TJ. Inflammatory oedema induced by synergism between calcitonin gene-related peptide (CGRP) and mediators of increased vascular permeability. Br J Pharmacol. 1985;86:855-860.  https://doi.org/10.1111/j.1476-5381.1985.tb11107.x
  51. Schlereth T, Schukraft J, Krämer-Best HH, Geber C, Ackermann T, Birklein F. Interaction of calcitonin gene related peptide (CGRP) and substance P (SP) in human skin. Neuropeptides. 2016;59:57-62.  https://doi.org/10.1016/j.npep.2016.06.001
  52. Ren K, Dubner R. Interactions between the immune and nervous systems in pain. Nat Med. 2010;16(11):1267-1276. https://doi.org/10.1038/nm.2234
  53. Davis MJ, et al. Modulation of lymphatic muscle contractility by the neuropeptide substance P. Am J Physiol Heart Circ Physiol. 2008;295:587-597.  https://doi.org/10.1152/ajpheart.01029.2007
  54. Chakraborty S, et al. Substance P activates both contractile and inflammatory pathways in lymphatics through the neurokinin receptors NK1R and NK3R. Microcirculation. 2011;18:24-35.  https://doi.org/10.1111/j.1549-8719.2010.00064.x
  55. Hosaka K, et al. Calcitonin gene-related peptide activates different signaling pathways in mesenteric lymphatics of guinea pigs. Am J Physiol Heart Circ Physiol. 2006;290:813-822.  https://doi.org/10.1152/ajpheart.00543.2005
  56. Liu T, et al. Emerging role of Toll-like receptors in the control of pain and itch. Neurosci Bull. 2012;28:131-144.  https://doi.org/10.1007/s12264-012-1219-5
  57. Baral P, et al. Pain and Itch: Beneficial or Harmful to Antimicrobial Defense? Cell Host Microbe. 2016;19:755-759.  https://doi.org/10.1016/j.chom.2016.05.010
  58. Chiu I, Heesters B, Ghasemlou N, et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature. 2013;501:52-57.  https://doi.org/10.1038/nature12479
  59. Pinho-Ribeiro FA, et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell. 2018;173:1083-1097. https://doi.org/10.1016/j.cell.2018.04.006
  60. Diogenes, A., Ferraz, C. C., Akopian, A. N., Henry, M. A. & Hargreaves, K. M. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J Dent Res. 2011;90:759-764.  https://doi.org/10.1177/0022034511400225
  61. Meseguer V, Alpizar Y, Luis E, et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat Commun. 2014;5:3125. https://doi.org/10.1038/ncomms4125
  62. Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2015;72(3):557-581.  https://doi.org/10.1007/s00018-014-1762-5
  63. Zeng H, Wu H, Sloane V, Jones R, Yu Y, Lin P, Gewirtz AT, Neish AS. Flagellin/TLR5 responses in epithelia reveal intertwined activation of inflammatory and apoptotic pathways. Am J Physiol Gastrointest Liver Physiol. 2006;290(1):96-108.  https://doi.org/10.1152/ajpgi.00273.2005
  64. Helley MP, Abate W, Jackson SK, Bennett JH, Thompson SW. The expression of Toll-like receptor 4, 7 and co-receptors in neurochemical sub-populations of rat trigeminal ganglion sensory neurons. Neuroscience. 2015;310:686-698.  https://doi.org/10.1016/j.neuroscience.2015.09.069
  65. Kashem SW, et al. Nociceptive Sensory Fibers Drive Interleukin-23 Production from CD301b+ Dermal Dendritic Cells and Drive Protective Cutaneous Immunity. Immunity. 2015;43:515-526.  https://doi.org/10.1016/j.immuni.2015.08.016
  66. Kim TG, Kim SH, Park J, Choi W, Sohn M, Na HY, Lee M, Lee JW, Kim SM, Kim DY, Kim HP, Choi JH, Park CG, Lee MG. Skin-Specific CD301b+ Dermal Dendritic Cells Drive IL-17-Mediated Psoriasis-Like Immune Response in Mice. J Invest Dermatol. 2018;138(4):844-853.  https://doi.org/10.1016/j.jid.2017.11.003
  67. Marion E, et al. Mycobacterial toxin induces analgesia in buruli ulcer by targeting the angiotensin pathways. Cell. 2014;157:1565-1576. https://doi.org/10.1016/j.cell.2014.04.040
  68. Gierthmühlen J, Braig O, Rehm S, Hellriegel J, Binder A, Baron R. Dynamic of the somatosensory system in postherpetic neuralgia. PAIN Reports. 2018;3(6):e668. https://doi.org/10.1097/PR9.0000000000000668
  69. Kramer S, Baeumler P, Geber C, Fleckenstein J, Simang M, Haas L, Schober G, Pfab F, Treede RD, Irnich D. Somatosensory profiles in acute herpes zoster and predictors of postherpetic neuralgia. Pain. 2019;160(4):882-894.  https://doi.org/10.1097/j.pain.0000000000001467

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.