Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Захаров Д.В.

ФГБУ «Национальный медицинский исследовательский центр психиатрии и неврологии им. В.М. Бехтерева» Минздрава России

Захарова Ю.В.

ФГБУ «Национальный медицинский исследовательский центр психиатрии и неврологии им. В.М. Бехтерева» Минздрава России

Цели рациональной нейропротекции в терапии хронической церебральной ишемии и возможности их достижения

Авторы:

Захаров Д.В., Захарова Ю.В.

Подробнее об авторах

Прочитано: 340 раз


Как цитировать:

Захаров Д.В., Захарова Ю.В. Цели рациональной нейропротекции в терапии хронической церебральной ишемии и возможности их достижения. Журнал неврологии и психиатрии им. С.С. Корсакова. 2025;125(8):96‑101.
Zakharov DV, Zakharova IuV. Targets of rational neuroprotection in the therapy of chronic cerebral ischemia and the possibilities of achieving them. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(8):96‑101. (In Russ.)
https://doi.org/10.17116/jnevro202512508196

Рекомендуем статьи по данной теме:
Це­реб­раль­ный ин­сульт: сов­ре­мен­ное сос­то­яние проб­ле­мы. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(11):7-18
Ан­ги­оп­ро­тек­ция в ам­бу­ла­тор­ной ан­ги­оло­гии: фо­кус на ре­гу­ля­тор­ные пеп­ти­ды. Кар­ди­оло­гия и сер­деч­но-со­су­дис­тая хи­рур­гия. 2024;(5):581-588
Воз­действие низ­ко­ин­тен­сив­ной ла­зе­ро­те­ра­пии в кор­рек­ции эн­це­фа­ло­па­тии при ме­ха­ни­чес­кой жел­ту­хе. Воп­ро­сы ку­рор­то­ло­гии, фи­зи­оте­ра­пии и ле­чеб­ной фи­зи­чес­кой куль­ту­ры. 2024;(6):19-24

Литература / References:

  1. Lee Reggie HC, Lee Michelle HH, Wu Celeste YC, et al. Cerebral ischemia and neuroregeneration. Neural Regen Res. 2018;13(3):373.  https://doi.org/10.4103/1673-5374.228711
  2. Lee RHC, Lee MHH, Wu CYC, et al. Corrigendum: Cerebral ischemia and neuroregeneration. Neural Regen Res. 2022;17(8):1639. https://doi.org/10.4103/1673-5374.332994
  3. Кадыков А.С., Шахпаронова Н.В. Хронические прогрессирующие сосудистые заболевания головного мозга. Consilium mediсum. Неврология. 2003;(12):1-2. 
  4. Федин П.А., Лагода О.В., Джибладзе Д.Н., Гнездицкий В.В. Когнитивные вызванные потенциалы у больных с атеросклеротической патологией магистральных артерий головы. Альманах клинической медицины. 2006;(13):98-102. 
  5. Чарвей А., Коберская Н.Н. Характеристики когнитивного вызванного потенциала Р300 при умеренных когнитивных расстройствах у пожилых пациентов с дисциркуляторной энцефалопатией. Неврологический журнал. 2006;11(S1):65-70. 
  6. Antonelli MC, Guillemin GJ, Raisman-Vozari R, et al. New Strategies in Neuroprotection and Neurorepair. Neurotox Res. 2012;21(1):49-56.  https://doi.org/10.1007/s12640-011-9265-8
  7. Захаров Д.В., Михайлов В.А. Проблемы церебральной микроциркуляции как терапевтическая мишень. Обозрение психиатрии и медицинской психологии имени ВМ Бехтерева. 2016;(3):103-108. 
  8. Fisher CM. The arterial lesions underlying lacunes. Acta Neuropathol. 1969;12(1):1-15.  https://doi.org/10.1007/BF00685305
  9. Fisher CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol. 1971;30(3):536-550.  https://doi.org/10.1097/00005072-197107000-00015
  10. Moretti R, Caruso P. Small Vessel Disease: Ancient Description, Novel Biomarkers. Int J Mol Sci. 2022;23(7):3508. https://doi.org/10.3390/ijms23073508
  11. Nag S. Blood-brain barrier permeability using tracers and immunohistochemistry. Methods Mol Med. 2003;89:133-144.  https://doi.org/10.1385/1-59259-419-0:133
  12. Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 2019;316(2):C135-C153. https://doi.org/10.1152/ajpcell.00136.2018
  13. Schulte ML, Wood JD, Hudetz AG. Cortical electrical stimulation alters erythrocyte perfusion pattern in the cerebral capillary network of the rat. Brain Res. 2003;963(1-2):81-92.  https://doi.org/10.1016/S0006-8993(02)03848-9
  14. Villringer A, Them A, Lindauer U, et al. Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study. Circ Res. 1994;75(1):55-62.  https://doi.org/10.1161/01.RES.75.1.55
  15. Tarumi T, Zhang R. Cerebral blood flow in normal aging adults: cardiovascular determinants, clinical implications, and aerobic fitness. J Neurochem. 2018;144(5):595-608.  https://doi.org/10.1111/jnc.14234
  16. Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology. 2008;55(3):310-318.  https://doi.org/10.1016/j.neuropharm.2008.01.005
  17. Puig B, Brenna S, Magnus T. Molecular Communication of a Dying Neuron in Stroke. Int J Mol Sci. 2018;19(9):2834. https://doi.org/10.3390/ijms19092834
  18. Payne SJ, Lucas C. Oxygen delivery from the cerebral microvasculature to tissue is governed by a single time constant of approximately 6 seconds. Microcirculation. 2018;25(2). https://doi.org/10.1111/micc.12428
  19. Du Y, Wang W, Lutton AD, et al. Dissipation of transmembrane potassium gradient is the main cause of cerebral ischemia-induced depolarization in astrocytes and neurons. Exp Neurol. 2018;303:1-11.  https://doi.org/10.1016/j.expneurol.2018.01.019
  20. Xue Y, Georgakopoulou T, van der Wijk AE, et al. Quantification of hypoxic regions distant from occlusions in cerebral penetrating arteriole trees. PLoS Comput Biol. 2022;18(8):e1010166. https://doi.org/10.1371/journal.pcbi.1010166
  21. Nadarajan V, Perry RJ, Johnson J, Werring DJ. Transient ischaemic attacks: mimics and chameleons. Pract Neurol. 2014;14(1):23-31.  https://doi.org/10.1136/practneurol-2013-000782
  22. Luoma JI, Kelley BG, Mermelstein PG. Progesterone inhibition of voltage-gated calcium channels is a potential neuroprotective mechanism against excitotoxicity. Steroids. 2011; 13(7): 34-39.  https://doi.org/10.1016/j.steroids.2011.02.013
  23. Papazian I, Kyrargyri V, Evangelidou M, et al. Mesenchymal stem cell protection of neurons against glutamate excitotoxicity involves reduction of NMDA-triggered calcium responses and surface GluR1, and is partly mediated by TNF. Int J Mol Sci. 2018;19(3): 23-28.  https://doi.org/10.3390/IJMS19030651
  24. Verma M, Wills Z, Chu CT. Excitatory dendritic mitochondrial calcium toxicity: Implications for Parkinson’s and other neurodegenerative diseases. Front Neurosci. 2018;12(AUG). https://doi.org/10.3389/FNINS.2018.00523
  25. Marmiroli P, Cavaletti G. The Glutamatergic Neurotransmission in the Central Nervous System. Curr Med Chem. 2012;19(9):1269-1276. https://doi.org/10.2174/092986712799462711
  26. Bylicky MA, Mueller GP, Day RM. Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxid Med Cell Longev. 2018;2018. https://doi.org/10.1155/2018/6501031
  27. Volterra A, Trotti D, Tromba C, Floridi S, Racagni G. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosc. 1994;14(5 I):2924-2932. https://doi.org/10.1523/jneurosci.14-05-02924.1994
  28. Harvey BK, Airavaara M, Hinzman J, et al. Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PLoS One. 2011;6(8). https://doi.org/10.1371/JOURNAL.PONE.0022135
  29. Zhang LN, Hao L, Guo YS, et al. Are glutamate transporters neuroprotective or neurodegenerative during cerebral ischemia? J Mol Med. 2019;97(3):281-289.  https://doi.org/10.1007/S00109-019-01745-5
  30. Lewis DK, Thomas KT, Selvamani A, Sohrabji F. Age-related severity of focal ischemia in female rats is associated with impaired astrocyte function. Neurobiol Aging. 2012;33(6):1123.e1-1123.e16.  https://doi.org/10.1016/j.neurobiolaging.2011.11.007
  31. Milewski K, Bogacińska-Karaś M, Hilgier W, et al. TNFα increases STAT3-mediated expression of glutaminase isoform KGA in cultured rat astrocytes. Cytokine. 2019;123.  https://doi.org/10.1016/j.cyto.2019.154774
  32. Olney JW. Brain Lesions, Obesity and Other Disturbances in Mice Treated with Monosodium Glutamate. Science (1979). 1969;164(3880):719-721.  https://doi.org/10.1126/science.164.3880.719
  33. Garthwaite G, Williams GD, Garthwaite J. Glutamate Toxicity: An Experimental and Theoretical Analysis. Eur J Neurosci. 1992;4(4):353-360.  https://doi.org/10.1111/j.1460-9568.1992.tb00882.x
  34. Choi D, Koh J, Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci. 1988;8(1):185-196.  https://doi.org/10.1523/JNEUROSCI.08-01-00185.1988
  35. Erecińska M, Silver IA. Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol. 2001;128(3):263-276.  https://doi.org/10.1016/S0034-5687(01)00306-1
  36. Andrabi SS, Parvez S, Tabassum H. Ischemic stroke and mitochondria: mechanisms and targets. Protoplasma. 2020;257(2):335-343.  https://doi.org/10.1007/s00709-019-01439-2
  37. Sattler R, Xiong Z, Lu WY, et al. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science (1979). 1999;284(5421):1845-1848. https://doi.org/10.1126/SCIENCE.284.5421.1845
  38. Sugawara T, Noshita N, Lewen A, et al. Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J Neurosci. 2002;22(1):209-217.  https://doi.org/10.1523/JNEUROSCI.22-01-00209.2002
  39. Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol. 2014;2(1):702-714.  https://doi.org/10.1016/j.redox.2014.05.006
  40. Kudin AP, Augustynek B, Lehmann AK, et al. The contribution of thioredoxin-2 reductase and glutathione peroxidase to H2O2 detoxification of rat brain mitochondria. Biochim Biophys Acta Bioenerg. 2012;1817(10):1901-1906. https://doi.org/10.1016/j.bbabio.2012.02.023
  41. Simats A, García-Berrocoso T, Montaner J. Neuroinflammatory biomarkers: From stroke diagnosis and prognosis to therapy. Biochim Biophys Acta (BBA) — Mol Bas Dis. 2016;1862(3):411-424.  https://doi.org/10.1016/j.bbadis.2015.10.025
  42. Ramiro L, Simats A, García-Berrocoso T, Montaner J. Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Ther Adv Neurol Disord. 2018;11(7): 34-39.  https://doi.org/10.1177/1756286418789340
  43. Lucas S, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147(S1): 11-18.  https://doi.org/10.1038/sj.bjp.0706400
  44. Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. J Transl Med. 2009;7(6): 34-37.  https://doi.org/10.1186/1479-5876-7-97
  45. Bustamante A, Simats A, Vilar-Bergua A, et al. Blood/Brain Biomarkers of Inflammation After Stroke and Their Association With Outcome: From C-Reactive Protein to Damage-Associated Molecular Patterns. Neurotherapeutics. 2016;13(4):671-684.  https://doi.org/10.1007/s13311-016-0470-2
  46. Hinzman JM, DiNapoli VA, Mahoney EJ, et al. Spreading depolarizations mediate excitotoxicity in the development of acute cortical lesions. Exp Neurol. 2015;267:243-253.  https://doi.org/10.1016/j.expneurol.2015.03.014
  47. Rakers C, Petzold GC. Astrocytic calcium release mediates peri-infarct depolarizations in a rodent stroke model. J Clin Invest. 2017;127(2):511-516.  https://doi.org/10.1172/JCI89354
  48. Piemonte F, Rossi F, Carletti B. Neuroprotection: The Emerging Concept of Restorative Neural Stem Cell Biology for the Treatment of Neurodegenerative Diseases. Curr Neuropharmacol. 2011;9(2):313-317.  https://doi.org/10.2174/157015911795596603
  49. Гранстрем О.К., Сорокина Е.Г., Сторожевых Т.П. Последние новости о Кортексине (нейропротекция на молекулярном уровне). Terra Medica Nova. 2008;5(55):40-44. 
  50. Гомазков О.А. Кортексин: молекулярные механизмы и мишени нейропротективной активности. Журнал неврологии и психиатрии им. С.С. Корсакова. 2015;115(8):99.  https://doi.org/10.17116/jnevro20151158199-104
  51. Куркин Д.В., Морковин Е.И., Калатанова А.В. и др. Антиоксидантное действие Кортексина, Церебролизина и Актовегина у животных с хронической ишемией головного мозга. Журнал неврологии и психиатрии им С.С Корсакова. 2021;121(7):84-89.  https://doi.org/10.17116/jnevro202112107184
  52. Dolmans LS, Rutten FH, Koenen NCT, et al. Candidate Biomarkers for the Diagnosis of Transient Ischemic Attack: A Systematic Review. Cerebrovasc Dis. 2019;47(5-6):207-216.  https://doi.org/10.1159/000502449
  53. Dambinova SA, Aliev KT, Bondarenko E V, et al. The biomarkers of cerebral ischemia as a new method for the validation of the efficacy of cytoprotective therapy. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(5):62-69.  https://doi.org/10.17116/jnevro20171175162-67
  54. Kurkin DV, Bakulin DA, Morkovin EI, et al. Neuroprotective action of Cortexin, Cerebrolysin and Actovegin in acute or chronic brain ischemia in rats. PLoS One. 2021;16(7):e0254493. https://doi.org/10.1371/journal.pone.0254493
  55. Федин А.И., Бельская Г.Н., Курушина О.В. и др. Дозозависимое действие кортексина при хронической ишемии мозга (результаты многоцентрового рандомизированного контролируемого исследования). Журнал неврологии и психиатрии им. С.С. Корсакова. 2018;118(9):35-41.  https://doi.org/10.17116/jnevro201811809135
  56. Степаничев М.Ю., Онуфриев М.В., Перегуд Д.И. и др. Влияние препарата кортексин на свободнорадикальное окисление и воспалительные процессы у крыс с нормальным и ускоренным старением. Нейрохимия. 2018;35(2):187-198.  https://doi.org/10.7868/S1027813318020127
  57. Lkhasaranova IB, Pinelis YI. The impact of Cortexin on cytokine levels in the treatment of moderate chronic generalized periodontitis in young and middle-aged people. Parodontologiya. 2023;28(4):389-395.  https://doi.org/10.33925/1683-3759-2023-820

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.