The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Voronina T.A.

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies

Litvinova S.A.

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies

Gladysheva N.A.

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies

Shulyndin A.V.

Privolzhsky Research Medical University

The known and new ideas about the mechanism of action and the spectrum of effects of Mexidol

Authors:

Voronina T.A., Litvinova S.A., Gladysheva N.A., Shulyndin A.V.

More about the authors

Read: 1507 times


To cite this article:

Voronina TA, Litvinova SA, Gladysheva NA, Shulyndin AV. The known and new ideas about the mechanism of action and the spectrum of effects of Mexidol. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(5):22‑33. (In Russ., In Engl.)
https://doi.org/10.17116/jnevro202512505122

Recommended articles:
Modern approaches to diagnosis and treatment of syndrome of auto­nomic dysfunction in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11-2):66-75
Stroke: current state of the problem. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):7-18
A role of transcription factors in pathogenic processes asso­ciated with schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):49-54
Modern aspe­cts of chro­nic cere­bral ischemia pathogenetic therapy. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):106-113
Neurocytoprotection adva­nces in repe­rfusion therapy. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12-2):75-88
Neuroprotective therapy for age-related macu­lar dege­neration. Russian Annals of Ophthalmology. 2024;(6):152-158
Neuroprotective therapy of glaucoma. Russian Annals of Ophthalmology. 2025;(1):83-90

References:

  1. Smirnov LD, Voronina TA. Anksioliticheskoe, protivoalkogol’noe, cerebroprotektornoe lekarstvennoe sredstvo Anxiolytic,antialcoholic,cerebroprotectivemedicinalproduct].RussianpatentRU2145855C1.2000Feb27.(InRuss.).
  2. Dyumaev KM, Voronina, TA, Smirnov LD, et al. Nootropnoe sredstvo https://patents.su/1992/09/15
  3. Smirnov LD, Voronina TA, Dyumaev KM, et al. Protivoalkogol’noe sredstvo Anti-alcoholdrugs].USSRpatentSU1777878A1.1992Nov30.(InRuss.).
  4. Smirnov LD, Voronina TA, Dyumaev KM. Lekarstvennoe sredstvo dlya lecheniya narkomanij Adrugforthetreatmentofdrugaddiction].RussianpatentRU2159615C1.2000Nov27.(InRuss.).
  5. Tilekeeva UM. Psihotropnye svojstva proizvodnyh 3-oksipiridina. [abstract of the dissertation]. Moscow, 1986. (In Russ.).
  6. Aliev AN. Harakteristika protivosudorozhnoj aktivnosti v ryadu proizvodnyh 3-oksipiridina. [abstract of the dissertation]. Baku, 1987. (In Russ.).
  7. Sopyev ZhA. Dinamika effektov nootropnyh preparatov i proizvodnyh 3-oksipiridina pri dlitel’nom primenenii. [abstract of the dissertation]. Moscow, 1987. (In Russ.).
  8. Krapivin SV. Elektrofiziologicheskij analiz dejstviya nootropnyh preparatov i proizvodnyh 3-oksipiridina. [abstract of the dissertation]. Moscow, 1987. (In Russ.).
  9. Eremenko AV. Rol’ membranotropnyh svojstv proizvodnyh 3-oksipiridina v farmakologicheskom effekte [abstract of the dissertation]. Moscow, 1987. (In Russ.).
  10. Sariev AK. Farmakokinetika proizvodnyh 3-oksipiridina v eksperimente. [abstract of the dissertation]. Moscow, 1987. 23 p. (In Russ.).
  11. Spasennikov BA. Primenenie anksiolitikov-antigipoksantov v intensivnoj terapii ostrogo perioda cerebral’nogo insul’ta. [abstract of the dissertation]. Moscow, 1989. (In Russ.).
  12. Kutepova OA. Geropsihotropnye svojstva antioksidanta meksidola i demanolaceglyumata (eksperimental’noeissledovanie). [abstract of the dissertation]. Moscow, 1990. (In Russ.).
  13. Dumaev KM, Voronina TA, Smirnov LD. Antioxidants in the prevention and therapy of Central nervous system pathologies. M.: Publishing House of the Institute of Biomedical Chemistry. 1995. (In Russ.).
  14. Antioksidanty. Ot molekuly do lechebnoj praktiki Antioxidants.Fromthemoleculetomedicalpractice].Eds.TA.Voronina,MM.Tanashyan,AI.Fedin,EYu.Solov’eva.Moscow:MediaSfera.2024.(InRuss.).
  15. Jang JY, Blum A, Liu J, et al. The role of mitochondria in aging. J Clin Invest. 2018;128(9):3662-3670. https://doi.org/10.1172/JCI120842
  16. Farshbaf JM, Kiani-Esfahani A. Succinate dehydrogenase: prospect for neurodegenerative diseases. Mitochondrion. 2018;42:77-83.  https://doi.org/10.1016/j.mito.2017.12.002
  17. Uittenbogaard M, Chiaramello A. Mitochondrial biogenesis: a therapeutic target for neurodevelopmental disorders and neurodegenerative diseases. Curr Pharm Des. 2014;20(35):5574-5593. https://doi.org/10.2174/1381612820666140305224906
  18. Ariza AC, Deen MPT, Robben JH. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front Endocrinol. 2012;3:1-8.  https://doi.org/10.3389/fendo.2012.00022
  19. Hamel D, Sanchez M, Duhamel F, et al. G-Protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery. Arterioscler Thromb Vasc Biol. 2014;34(2):285-293.  https://doi.org/10.1161/ATVBAHA.113.302131
  20. Voronina TA. Geroprotective effects of ethylmethylhydroxypyridine succinate in an experimental study. SS. Korsakov Journal of Neurology and Psychiatry. 2020;120(4):81-87. (In Russ.). https://doi.org/10.17116/jnevro202012004181
  21. Voronina TA. Svobodnoradikal’naya i mitohondrial’naya teorii stareniya. Effekty reparata Meksidol kak geroprotektora i geriatricheskogo sredstva. The book: Antioksidanty. Ot molekuly do lechebnoj praktiki Antioxidants.Fromthemoleculetomedicalpractice].Eds.TA.Voronina,MM.Tanashyan,AI.Fedin,EYuSolov’eva.Moscow:MediaSfera,2024:172-189.(InRuss.).
  22. Kirova YuI, Shakova FM, Voronina TA. Issledovanie cerebral’nyh effektov preparata Meksidol, oposredovannyh receptorom sukcinata SUCNR1: stimulyaciya mitohondriogeneza i protivovospalitel’noj polyarizacii mikroglii. The book: Antioksidanty. Ot molekuly do lechebnoj praktiki Antioxidants.Fromthemoleculetomedicalpractice].Eds.TA.Voronina,MM.Tanashyan,AI.Fedin,EYu.Solov’eva.Moscow:MediaSfera,2024:143-171.(InRuss.).
  23. Novikov VE, Levchenkova OS, Ivantsova EN. Possibilities of antihypoxant use for mitochondrial dysfunctions. Vestnik Smolenskoy Gosudarstvennoy Meditsinskoy Akademii. 2020;19(1):41-55. (In Russ.).
  24. Smirnov LD, Sholina SI. Izuchenie antioksidantnyh svojstv 3-oksipiridina. Bulletin of the Russian Academy of Sciences. Chemistry. 1963;5:890-893. (In Russ.).
  25. Smirnov LD, Dyumaev KM, Search for active substances among new chemical compounds. VII All-Union Symposium Purposeful research of physiologically active substances. Riga, 1989:154-162. (In Russ.).
  26. Komarov LG, Bilenko MV, Shvedova AA, et al. The effect of 3-hydroxypyridine derivatives on lipid peroxidation processes. Voprosy Medicinskoj Himii. 1985;2:40-45. (In Russ.).
  27. Voronina TA. New directions in the search for nootropic drugs (problematic article). Vestnik RAMN. 1998;1:16-21. (In Russ.).
  28. Voronina TA. Antioksidant meksidol. Main effects and mechanism of action. Psihofarmakologija i Biologicheskaja Narkologija. 2001;1 2-12. (In Russ.).
  29. Voronina TA. Mexidol. The main neuropsychotropic effects and mechanism of action. Farmateka. 2009; 6(180):1-4. (In Russ.).
  30. Voronina TA. Mexidol: the spectrum of pharmacological effects. SS. Korsakov Journal of Neurology and Psychiatry. 2012;112(12):86-90. (In Russ.). https://www.mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2012/12/031997-729820121215
  31. Voronina TA. Okislitel’nyj stress i antioksidantnaya sistema v norme i pri patologicheskih sostoyaniyah i zabolevaniyah. Antioksidanty. Istoriya sozdaniya preparata Meksidol. The book: Antioksidanty. Ot molekuly do lechebnoj praktiki. Eds. TA. Voronina, MM. Tanashyan, AI. Fedin, EYu. Solov’eva. Moscow: MediaSfera, 2024:16-34. (In Russ.).
  32. Voronina TA, Val’dman EA, Zolotov NN, et al. Patogenez gipoksicheskih sostoyanij i vozmozhnosti zashchity organizma ot kislorodnoj nedostatochnosti. Antigipoksanty, antioksidanty. Meksidol. The book: Antioksidanty. Ot molekuly do lechebnoj praktiki. Eds. TA. Voronina, MM. Tanashyan, AI. Fedin, EYu. Solov’eva. Moscow: MediaSfera, 2024:35-50. 
  33. Kuznecov YuV, Matyushin IA, Smirnov LD, et al. Issledovanie antiokislitel’noj aktivnosti novyh analogov etilmetilgidroksipiridina sukcinata i proizvodnyh gidroksipirididobenzimidazola. Vestnik novyh medicinskih tekhnologij. 2006;13(3):9-10. (In Russ.).
  34. Novikov VE, Kulagin KN, Kovaleva LA, The activity of lipid peroxidation in the dynamics of traumatic brain injury and its correction with mexidol. 4-ya nauchno-prakticheskaya konferenciya s mezhdunarodnym uchastiem «Aktivnye formy kisloroda, oksid azota, antioksidanty i zdorov’e cheloveka». Smolensk, 2005:283-284. (In Russ.).
  35. Usanova AA, Inchina VI, Zor’kina AV. Citoprotektory v korrekcii sochetannyh metabolicheskih narushenij. Saransk: Vektor-print. 2009:119. (In Russ.).
  36. Yasnecov VV, Smirnov LD. Effektivnost’ novyh proizvodnyh 3-gidroksipiridina, obladayushchih antioksidantnoj aktivnost’yu, pri razlichnyh vidah gipoksii. Mezhdunarodnaya konferenciya Bioantioksidant. International Conference Bioantioxidant. Moscow, 2006:292-293. (In Russ.).
  37. Bashkatova V, Narkevich V, Vitskova G, et al. The influence of anticonvulsant and antioxidant drugs on nitric oxide level and lipid peroxidation in the rat brain during penthylenetetrazole-induced epileptiform model seizures. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(3):487-492.  https://doi.org/10.1016/S0278-5846(03)00037-X
  38. Voronina TA, Seredenin SB. Analysis of the mechanism of psychotropic action of 3-hydroxypyridine derivative. Annali dell Istituto Superiore di Sanità 1988;24(3):461-466. 
  39. Voronina TA. Nootropic Drugs in Alzheimer Disease Treatment. New Pharmacological Strategies. In: Giacobini E, Becker RE. (eds). Alzheimer Disease. Advances in Alzheimer Disease Therapy. Birkhäuser Boston. 1994. https://doi.org/10.1007/978-1-4615-8149-9_45
  40. Shchulkin AV. Effect of mexidol on the development of the phenomenon of the neuronal excitotoxicity in vitro. SS. Korsakov Journal of Neurology and Psychiatry. 2012;112(2):35-39. (In Russ.). https://www.mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2012/2/031997-729820120206
  41. Lankin VZ, Gurevich SM. Ingibirovanie pereokisleniya lipidov i detoksikaciya lipoperekisej zashchitnymi fermentativnymi sistemami (superoksiddismutaza, glutation-peroksidaza, glutationreduktaza) pri eksperimental’nom zlokachestvennom roste. DAN SSSR. 1976;226(3):705-708. (In Russ.).
  42. Eremenko AV, Avdulov NA, Gankina EM, et al. Effect of subchronic administration of phenazepam and synthetic antioxidants on the functional status of synaptic membranes in the cerebral cortex of rats subjected to prolonged stress. Bjulleten’ Jeksperimental’noj Biologii i Mediciny. 1988;105(1):38-40. (In Russ.).
  43. Sokolova NE, Taranova NP, Voronina TA, et al. Izuchenie processov perekisnogo okisleniya lipidov i biosinteza membrannyh belkov i RNK v nejronah i gliocitah pri stresse i vliyanii fiziologicheski aktivnyh veshchestv. Nejrohimiya. 1988;7(4):483-492. (In Russ.).
  44. Voronina TA, Nerobkova LN, Markina NV, et al. Kletochnye mekhanizmy realizacii farmakologicheskogo effekta. Moscow. 1990:54-77. (In Russ.).
  45. Markina NV. Farmakologicheskaya korrekciya povedencheskih i elektrofiziologicheskih narushenij pri deprivacii paradoksal’noj faza sna u krys. [abstract of the dissertation]. Moscow, 19876. 22 p. (In Russ.).
  46. Taranova NP, Nilova NS. Vliyanie stressa po Zhuve na soderzhanie RNK i SN-grupp v belkah nejronov i gliocitov. Fiziologicheskij Zhurnal. 1986;72:1065-1069. (In Russ.).
  47. Kondrashova MN. Gormonopodobnoedejstvieyantarnojkisloty. Voprosy Biologicheskoj, Medicinskoj i Farmacevticheskoj Himii. 2002:1:7-12. (In Russ.).
  48. Maevskiĭ EI, Grishina EV, Rozenfel’d AS, et al. Anaerobic formation of succinate and facilitation of its oxidation — possible mechanisms of cell adaptation to oxygen deficiency. Biomedicinskij Zhurnal. 2000;1(3):32-36. (In Russ.).
  49. Vinogradov VM, Uriupov OIu. Hypoxia as a pharmacological problem. Farmakologiya i Toksikologiya. 1985;48(4):9-20. (In Russ.).
  50. Kondrashova MN. Terapevticheskoe dejstvie yantarnoj kisloty. Pushchino: NCBI AN SSSR. 1976.
  51. Okovityi SV, Sukhanov DS, Zaplutanov VA, et al. Antihypoxants in current clinical practice. Clinical Medicine. 2012;90(9):63-68. (In Russ.).
  52. Gusev EI, Skvortsova VI. Ishemiya golovnogo mozga Cerebralischemia].Moscow:Medicina.2001.(InRuss.).
  53. Smirnov AV, Nesterova OB, Golubev RV. Succinic acid and its application in medicine. Succinic acid: metabolite and regulator of metabolism of the human body. Nephrology. 2014;18(2):33-41. (In Russ.).
  54. Shahmardanova SA, Gulevskaya ON, Hananashvili YaA, et al. Preparaty yantarnoj i fumarovoj kislot kak sredstva profilaktiki i terapii razlichnyh zabolevanij. Zhurnal Fundamental’noj Mediciny i Biologii. 2016;3:16-30. (In Russ.).
  55. Koivunen P, Hirsila M, Remes AM, et al. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem. 2007;282:4524-4532. https://doi.org/10.1074/jbc.m610415200
  56. Lukyanova LD, Romanova VE, Chernobaeva GN, et al. Osobennosti antigipoksicheskogo dejstviya meksidola svyazannye s ego specificheskim vliyaniem na energeticheskij obmen. Himiko-Farmacevticheskij Zhurnal. 1990;8:9-11. (In Russ.).
  57. Lukyanova LD. Current issues of adaptation to hypoxia. signal mechanisms and their role in system regulation. Patologicheskaya Fiziologiya i Ehksperimental’naya Terapiya. 2011;(1):3-19. (In Russ.).
  58. Lukyanova LD. Signal’nye Mekhanizmy Gipoksii. M.: RAS; 2019. (In Russ.).
  59. He W, Miao FJ, Lin DC, et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature. 2004;429:188-193.  https://doi.org/10.1038/nature02488
  60. Gnana-Prakasam JP, Ananth S, Prasad PD, et al. Expression and iron-dependent regulation of succinate receptor GPR91 in retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2011;52(6):3751-3758. https://doi.org/10.1167/iovs.10-6722
  61. Sapieha P, Sirinyan M, Hamel D, et al. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med. 2008;14:1067-1076. https://doi.org/10.1038/nm.1873
  62. Krzak G, Willis CM, Smith JA, et al. Succinate receptor 1: An emerging regulator of myeloid cell function in inflammation. Trends Immunol. 2021;42(1):45-58.  https://doi.org/10.1016/j.it.2020.11.004
  63. Grazioli S, Pugin J. Mitochondrial damage-associated molecular patterns: from inflammatory signaling to human diseases. Front Immunol. 2018;9:832.  https://dx.doi.org/10.3389/fimmu.2018.00832
  64. Wilkins HM, Harris JL, Carl SM, et al. Oxaloacetate activates brain mitochondrial biogenesis, enhances the insulin pathway, reduces inflammation and stimulates neurogenesis. Hum Mol Genet. 2014;23(24):6528-6541. https://doi.org/10.1093/hmg/ddu371
  65. Cheng A, Wan R, Yang JL, et al. Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun. 2012;3:1250. https://doi.org/10.1038/ncomms2238
  66. Camandola S, Mattson MP. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 2017;36:1474-1492. https://doi.org/10.15252/embj.201695810
  67. Fumagalli M, Lombardi M, Gressens P, et al. How to reprogram microglia toward beneficial functions. Glia. 2018;66:2531-2549. https://doi.org/10.1002/glia.23484
  68. Kirova YuI, Shakova FM, Germanova EL, et al. The effect of Mexidol on cerebral mitochondriogenesis at a young age and during aging. SS. Korsakov Journal of Neurology and Psychiatry. 2020;120(1):62-69. (In Russ.). https://doi.org/10.17116/jnevro202012001162
  69. Kirova YI, Shakova FM, Voronina TA. Ethylmethylhydroxypyridine succinate induces anti-inflammatory polarization of microglia in the aging rat brain. Biological Membranes. 2022;39(1):44-53.(In Russ.). https://doi.org/10.31857/S0233475521060049
  70. Kirova YuI, Germanova EL. New aspects of the energy-tropic action of mexidol. Zhurnal «Patologicheskaia Fiziologiia i Eksperimental`Naia Terapiia». 2018;62(4):36-40. (In Russ.). https://dx.doi.org/10.25557/0031-2991.2018.04.36-40
  71. Shakova FM Mekhanizmy disregulyacii vnutrikletochnyh nejroprotektivnyh system pri ishemicheskom povrezhdenii golovnogo mozga (eksperimental’noe issledovanie). [abstract of the dissertation]. Moscow, 2022. (In Russ.).
  72. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24(1):78-90.  https://doi.org/10.1210/er.2002-0012
  73. Ventura-Clapier R, Garnier A, Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1a. Cardiovasc Res. 2008;79(2):208-217.  https://dx.doi.org/10.1093/cvr/cvn098
  74. Anzell AR, Maizy R, Przyklenk K, et al. Mitochondrial Quality Control and Disease: Insights into Ischemia-Reperfusion Injury. Mol Neurobiol. 2018;55:2547-2564. https://doi.org/10.1007/s12035-017-0503-9
  75. Gureev AP, Shaforostova EA, Popov VN. Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α signaling pathways. Front Gen. 2019;10:435.  https://doi.org/10.3389/fgene.2019.00435
  76. Anderson R, Prolla T. PGC-1alpha in aging and anti-aging interventions. Biochim Biophys Acta. 2009;1790(10):1059-1066. https://doi.org/10.1016/j.bbagen.2009.04.005
  77. Austin S, St-Pierre J. PGC1α and mitochondrial metabolism emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci. 2012;125(21):4963-4971. https://doi.org/10.1242/jcs.113662
  78. Bratic A, Larsson NG. The role of mitochondria in aging. J. Clin. Invest. 2013;123(3):951-957.  https://doi.org/10.1172/JCI64125
  79. Rubic T, Lametschwandtner G, Jost S, Hinteregger S, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol. 2008;9:1261-1269. https://doi.org/10.1038/ni.1657
  80. Semenza GL, Agani F, Feldser D, et al. Hypoxia, HIF-1, and the pathophysiology of common human diseases. Adv Exp Med Biol. 2000;475:123-130.  https://doi.org/10.1007/0-306-46825-5_12
  81. Dong P, Li Q, Han H. HIF-1α in cerebral ischemia (Review). Mol Med Rep. 2022;25(2):41.  https://doi.org/10.3892/mmr.2021.12557
  82. Ho TK, Rajkumar V, Ponticos M, et al. Increased endogenous angiogenic response and hypoxia-inducible factor-1α in human critical limb ischemia. J Vasc Surg. 2006;43(1):125-133.  https://doi.org/10.1016/j.jvs.2005.08.042
  83. Jiang Q, Geng X, Warren J, et al. Hypoxia inducible factor-1α (HIF-1α) mediates NLRP3 inflammasome-dependent-pyroptotic and apoptotic cell death following ischemic stroke. Neuroscience. 2020;448:126-139.  https://doi.org/10.1016/j.neuroscience.2020.09.036
  84. Shen Y, Gu J, Liu Z, et al. Inhibition of HIF-1α Reduced Blood Brain Barrier Damage by Regulating MMP-2 and VEGF During Acute Cerebral Ischemia. Front Cell Neurosci. 2018;12:288.  https://doi.org/10.3389/fncel.2018.00288
  85. Kang KA, Hyun JW. Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance. Toxicol Res. 2017;33(1):1-5.  https://doi.org/10.5487/TR.2017.33.1.001
  86. Yakusheva EN, MylnikovPYu, Chernykh IV, et al. Mexidol effect on the factor induced by hypoxia HIF-1α expression in the rat cerebral cortex in ischemia. SS. Korsakov Journal of Neurology and Psychiatry. 2017;117(10):87-91. (In Russ.). https://doi.org/10.17116/jnevro201711710187-91
  87. Yakusheva EN, Mylnikov PYu, Chernykh IV, et al. An effect of mexidol on the expression of the transcription factor Nrf2 in the rat cerebral cortex in ischemia. SS. Korsakov Journal of Neurology and Psychiatry. 2018;118(5):64-68. (In Russ.). https://doi.org/10.17116/jnevro20181185164
  88. Yakusheva EN, Shchul’kin AV, Myl’nikov PYu. Vliyanie preparata Meksidol na transkripcionnye faktory HIF-1α i NRF2. The book: Antioksidanty. Ot molekuly do lechebnoj praktiki. Eds. TA. Voronina, MM. Tanashyan, AI. Fedin, EYu. Solov’eva. Moscow: MediaSfera, 2024:130-142. (In Russ.).
  89. Jin K, Wang X, Xie L, et al. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci USA. 2006;103:13198-13202. https://doi.org/10.1073/pnas.0603512103
  90. Jin K, Minami M, Lan JQ, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA. 2001;98:4710-4715. https://doi.org/10.1073/pnas.081011098
  91. Rahman AA, Amruta N, Pinteaux E, et al. Neurogenesis After Stroke: A Therapeutic Perspective. Transl Stroke Res. 2021;12(1):1-14.  https://doi.org/10.1007/s12975-020-00841-w
  92. Ruan L, Wang B, ZhuGe Q, et al. Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res. 2015;1623:166-173.  https://doi.org/10.1016/j.brainres.2015.02.042
  93. Shchulkin AV, Chernykh IV, Abalenikhina YuV, et al. The effect of Mexidol on the level of neurogenesis markers in acute cerebrovascular accident in the experiment. SS. Korsakov Journal of Neurology and Psychiatry. 2025;125(2):107-112. (In Russ.). https://doi.org/10.17116/jnevro2025125021107
  94. Barde YA. Neurotrophins: a family of proteins supporting the survival of neurons. Prog Clin Biol Res. 1994;390:45-56 
  95. Holtzman DM, Sheldon RA, Jaffe W, et al. Nerve growth factor protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol. 1996;39(1):114-122.  https://doi.org/10.1002/ana.410390117
  96. Li SL, Li J, Zhou HS, et al. Research progress of IGF-1 and cerebral ischemia. Ibrain. 2021;7(1):57-67.  https://doi.org/10.1002/j.2769-2795.2021.tb00066.x
  97. Kokaia Z, Andsberg G, Yan Q, et al. Rapid alterations of BDNF protein levels in the rat brain after focal ischemia: evidence for increased synthesis and anterograde axonal transport. Exp Neurol. 1998;154(2):289-301.  https://doi.org/10.1006/exnr.1998.6888
  98. Endres M, Fan G, Hirt L, et al. Ischemic brain damage in mice after selectively modifying BDNF or NT4 gene expression. J Cereb Blood Flow Metab. 2000;20:139-144.  https://doi.org/10.1097/00004647-200001000-00018
  99. Larsson E, Mandel RJ, Klein RL, et al. Suppression of insult-induced neurogenesis in adult rat brain by brain-derived neurotrophic factor. Exp Neurol 2002;177(1):1-8.  https://dx.doi.org/10.1006/exnr.2002.7992
  100. Hatakeyama M, Ninomiya I, Kanazawa M. Angiogenesis and neuronal remodeling after ischemic stroke. Neural Regen Res. 2020;15(1):16-19.  https://doi.org/10.4103/1673-5374.264442
  101. Duly AMP, Kao FCL, Teo WS, et al. βIII-Tubulin Gene Regulation in Health and Disease. Front Cell Dev Biol. 2022;10:851542. https://doi.org/10.3389/fcell.2022.851542
  102. Terekhina OL, Kirova YuI. The effect of ethylmethylhydroxypyridine succinate on the parameters of chronic neuroinflammation and plastic processes in the brain of old rats during course of dexamethasone administration. SS. Korsakov Journal of Neurology and Psychiatry. 2024;124(9):115-121. (In Russ.). https://doi.org/10.17116/jnevro2024124091115
  103. Skvortsova VI, Stakhovskaya LV, Nartsissov YaR, et al. The randomized double-blind placebo-controlled study of efficacy and safety of mexidol in the complex therapy of ischemic stroke in the acute period. SS. Korsakov Journal of Neurology and Psychiatry. 2006;106(12-2):47-54. (In Russ.).
  104. Stakhovskaya LV, Shamalov NA, Khasanova DR, et al. Results of a randomized double blind multicenter placebo-controlled, in parallel groups trial of the efficacy and safety of prolonged sequential therapy with mexidol in the acute and early recovery stages of hemispheric ischemic stroke (EPICA). SS. Korsakov Journal of Neurology and Psychiatry. 2017;117(3-2):55-65. (In Russ.). https://doi.org/10.17116/jnevro20171173255-65
  105. Stakhovskaya LV, Shamalov NA, Khasanova DR, et al. Results of a Randomized, Double-Blind, Multicenter, Placebo-Controlled, Parallel-Group Study of the Efficacy and Safety of Mexidol in Prolonged Sequential Therapy of Patients in the Acute and Early Recovery Stages of Hemispheric Stroke (the EPICA study). Neuroscience and Behavioral Physiology. 2018;48:8:929-938.  https://doi.org/10.1007/s11055-018-0652-y
  106. Fedin AI, Zakharov VV, Tanashyan MM, et al. Results of an international multicenter, randomized, double-blind, placebo-controlled study assessing the efficacy and safety of sequential therapy with Mexidol and Mexidol FORTE 250 in patients with chronic brain ischemia (MEMO). SS. Korsakov Journal of Neurology and Psychiatry. 2021;121:11-16. (In Russ.). https://doi.org/10.17116/jnevro20211211117
  107. Zaharov VV, Tkacheva ON, Mkhitaryan EA, et al. Efficacy of Mexidol in patients with chronic brain ischemia and cognitive impairment of different age groups (results of sub-analysis of the international multicenter, randomized, double-blind, placebo-controlled study of sequential therapy in patients with chronic brain ischemia MEMO). SS. Korsakov Journal of Neurology and Psychiatry. 2022;122(11-2):73-80. (In Russ.). https://doi.org/10.17116/jnevro202212211273
  108. Zavadenko NN, SuvorinovaNYu, Batysheva TT, et al. Results of a multicentre double-blind randomised placebo-controlled clinical trial evaluating the efficacy and safety of Mexidol in the treatment of Attention Deficit Hyperactivity Disorder in Children (MEGA). SS. Korsakov Journal of Neurology and Psychiatry. 2022;122(4):75-86. (In Russ.). https://doi.org/10.17116/jnevro202212204175
  109. Ministerstvo zdravoohraneniya Rossijskoj federacii. Klinicheskie rekomendacii «Ishemicheskij insul’t i tranzitornaya ishemicheskaya ataka», 2024. [cited 2025 Mar 18]. (In Russ.). Available from: https://cr.minzdrav.gov.ru/preview-cr/814_1
  110. Ministerstvo zdravoohraneniya Rossijskoj federacii. Klinicheskie rekomendacii «Kognitivnye rasstrojstva u lic pozhilogo i starcheskogo vozrasta» 2024. [cited 2025 Mar 18]. (In Russ.). Available from: https://cr.minzdrav.gov.ru/preview-cr/617_5
  111. Ministerstvo zdravoohraneniya Rossijskoj federacii. Klinicheskie rekomendacii «Glaukoma pervichnaya otkrytougol’naya», 2024. [cited 2025 Mar 18]. (In Russ.). Available from: https://cr.minzdrav.gov.ru/preview-cr/96_2%20
  112. Knni KS, Dyomin TV, Adeeva LB. Effect of mexidol on the efficiency of intravenous thrombolytic therapy for ischemic stroke during the therapeutic window. Neurology, Neuropsychiatry, Psychosomatics. 2018;10(3):86-90. (In Russ.). https://doi.org/10.14412/2074-2711-2018-3-86-90
  113. Koval’chuk VV, Barantsevich ER, Guryanova EA, et al. Multidisciplinary principle of patient management after stroke. Efficiency criteria and success factors of physical, neuropsychological and drug rehabilitation. Effective Pharmacotherapy. 2020;16(31):10-22. (In Russ.).
  114. Koval’chuk VV. Neurometabolic therapy in secondary prevention of stroke. SS. Korsakov Journal of Neurology and Psychiatry. 2014;114(3):24-28. (In Russ.). https://www.mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2014/3/031997-7298201433

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.