Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Аленикова О.А.

ГУ «Республиканский научно-практический центр неврологии и нейрохирургии» Минздрава Республики Беларусь

Чумак А.А.

ГУ «Республиканский научно-практический центр неврологии и нейрохирургии» Минздрава Республики Беларусь

Слуховая дисфункция при болезни Паркинсона

Авторы:

Аленикова О.А., Чумак А.А.

Подробнее об авторах

Прочитано: 282 раза


Как цитировать:

Аленикова О.А., Чумак А.А. Слуховая дисфункция при болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. 2025;125(11):11‑18.
Alenikova OA, Chumak AA. Auditory dysfunction in Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(11):11‑18. (In Russ.)
https://doi.org/10.17116/jnevro202512511111

Рекомендуем статьи по данной теме:
Ней­ро­хи­ми­чес­кие ме­ха­низ­мы воз­ник­но­ве­ния тре­мо­ра при бо­лез­ни Пар­кин­со­на. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(11):64-72
Ког­ни­тив­ные на­ру­ше­ния у па­ци­ен­тов с бо­лез­нью Пар­кин­со­на. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(11):81-90
Дис­фун­кция мо­че­во­го пу­зы­ря у па­ци­ен­тов с I—III ста­ди­ями бо­лез­ни Пар­кин­со­на. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(11):91-99
Ког­ни­тив­ные на­ру­ше­ния у би­лин­гвис­тов при нев­ро­ло­ги­чес­ких за­бо­ле­ва­ни­ях. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(12):26-29
Сов­ре­мен­ные ас­пек­ты па­то­ге­не­ти­чес­кой те­ра­пии хро­ни­чес­кой ише­мии моз­га. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(12):106-113
Диф­фе­рен­ци­ро­ван­ный под­ход к ког­ни­тив­ной ре­аби­ли­та­ции па­ци­ен­тов, пе­ре­нес­ших ин­сульт. Воп­ро­сы ку­рор­то­ло­гии, фи­зи­оте­ра­пии и ле­чеб­ной фи­зи­чес­кой куль­ту­ры. 2024;(6):5-11

Литература / References:

  1. Jafari Z, Kolb BE, Mohajerani MH. Auditory dysfunction in Parkinson’s disease. Movement Disorders 2020;35(4):537-550.  https://doi.org/10.1002/mds.28000
  2. Cherko M, Hickson L, Bhutta M. Auditory deprivation and health in the elderly. Maturitas. 2016;88:52-57.  https://doi.org/10.1016/j.maturitas.2016.03.008
  3. Keesom SM, Hurley LM. Silence, Solitude, and Serotonin: Neural Mechanisms Linking Hearing Loss and Social Isolation. Brain Sciences. 2020;10(6):367.  https://doi.org/10.3390/brainsci10060367
  4. Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. Lancet. 2017;390(10113):2673-2734. https://doi.org/10.1016/S0140-6736(17)31363-6
  5. Maison SF, Liu XP, Eatock RA, et al. Dopaminergic signaling in the cochlea: Receptor expression patterns and deletion phenotypes. Journal of Neuroscience. 2012;32:344-355.  https://doi.org/10.1523/jneurosci.4720-11.2012
  6. Le Prell CG, Halsey K, Hughes LF, et al. Disruption of lateral olivocochlear neurons via a dopaminergic neurotoxin depresses sound-evoked auditory nerve activity. Journal of Association for Research in Otolaryngology. 2005;6(1):48-62.  https://doi.org/10.1007/s10162-004-5009-2
  7. Ruel J, Nouvian R, D’Aldin CG, et al. Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea. European Journal of Neuroscience. 2001;14(6):977-986.  https://doi.org/10.1046/j.0953-816x.2001.01721.x
  8. De Keyser K, De Letter M, De Groote E, et al. Systematic Audiological Assessment of Auditory Functioning in Patients With Parkinson’s Disease. Journal of Speech, Language, and Hearing Research. 2019;62(12):4564-4577. https://doi.org/10.1044/2019_jslhr-h-19-0097
  9. Akil O, Weber CM, Park SN, et al. Localization of Synucleins in the Mammalian Cochlea. Journal of the Association for Research in Otolaryngology. 2008;9(4):452-463.  https://doi.org/10.1007/s10162-008-0134-y
  10. Musiek FE, Shinn J, Chermak GD, et al. Perspectives on the Pure-Tone Audiogram. J Am Acad Audiol. 2017;28(7):655-671.  https://doi.org/10.3766/jaaa.16061
  11. Kemp DT. Otoacoustic emissions, their origin in cochlear function, and use. British Medical Bulletin. 2002;63(1):223-241.  https://doi.org/10.1093/bmb/63.1.223
  12. Lopes MS, Melo AS, Corona AP, et al. Is there auditory impairment in Parkinson’s disease? Rev. CEFAC. 2018;20(5):573-582.  https://doi.org/10.1590/1982-021620182052418
  13. Gittelman JX, Perkel DJ, Portfors CV. Dopamine Modulates Auditory Responses in the Inferior Colliculus in a Heterogeneous Manner. Journal of the Association for Research in Otolaryngology. 2013;14(5):719-729.  https://doi.org/10.1007/s10162-013-0405-0
  14. Maison SF, Liu XP, Eatock RA, et al. Dopaminergic Signaling in the Cochlea: Receptor Expression Patterns and Deletion Phenotypes. The Journal of Neuroscience. 2012;32(1):344-355.  https://doi.org/10.1523/JNEUROSCI.4720-11.2012
  15. Bender KJ, Uebele VN, Renger JJ, et al. Control of firing patterns through modulation of axon initial segment T-type calcium channels. The Journal of Physiology. 2011;590(1):109-118.  https://doi.org/10.1113/jphysiol.2011.218768
  16. Brinkmann P, Kotz SA, Smit JV, et al. Auditory thalamus dysfunction and pathophysiology in tinnitus: a predictive network hypothesis. Brain Structure and Function. 2021;226(6):1659-1676. https://doi.org/10.1007/s00429-021-02284-x
  17. Pickles JO. Auditory pathways: anatomy and physiology. Handbook of Clinical Neurology. 2015;129:3-25.  https://doi.org/10.1016/B978-0-444-62630-1.00001-9
  18. Schofield BR. Structural Organization of the Descending Auditory Pathway. Oxford University Press; 2010;43-46.  https://doi.org/10.1093/oxfordhb/9780199233281.013.0003
  19. Romero GE, Trussell LO. Central circuitry and function of the cochlear efferent systems. Hearing Research. 2022;425:108516. https://doi.org/10.1016/j.heares.2022.108516
  20. Bidet-Caulet A, Buchanan KG, Viswanath H, et al. Impaired Facilitatory Mechanisms of Auditory Attention After Damage of the Lateral Prefrontal Cortex. Cerebral Cortex. 2014;25(11):4126-4134. https://doi.org/10.1093/cercor/bhu131
  21. Eckert MA, Teubner-Rhodes S, Vaden KI. Is Listening in Noise Worth It? The Neurobiology of Speech Recognition in Challenging Listening Conditions. Ear and Hearing. 2016;37:101-110.  https://doi.org/10.1097/aud.0000000000000300
  22. Peelle JE. Listening Effort: How the Cognitive Consequences of Acoustic Challenge Are Reflected in Brain and Behavior. Ear and Hearing. 2018;39(2):204-214.  https://doi.org/10.1097/AUD.0000000000000494
  23. Kuchinsky SE, Vaden KI. Aging, Hearing Loss, and Listening Effort: Imaging Studies of the Aging Listener. Aging and Hearing. 2020;231-256.  https://doi.org/10.1007/978-3-030-49367-7_10
  24. Rönnberg J, Rudner M, Lunner T, et al. When cognition kicks in: Working memory and speech understanding in noise. Noise and Health. 2010;12(49):263-269.  https://doi.org/10.4103/1463-1741.70505
  25. Tommasi G, Fiorio M, Yelnik J, et al. Disentangling the Role of Cortico-Basal Ganglia Loops in Top-Down and Bottom-Up Visual Attention: An Investigation of Attention Deficits in Parkinson Disease. Journal of Cognitive Neuroscience. 2015;27(6):1215-1237. https://doi.org/10.1162/jocn_a_00770
  26. van Schouwenburg MR, den Ouden HEM, Cools R. The Human Basal Ganglia Modulate Frontal-Posterior Connectivity during Attention Shifting. Journal of Neuroscience. 2010;30(29):9910-9918. https://doi.org/10.1523/jneurosci.1111-10.2010
  27. Gatehouse S, Noble W. The Speech, Spatial and Qualities of Hearing Scale (SSQ). International Journal of Audiology. 2004;43(2):85-99.  https://doi.org/10.1080/14992020400050014
  28. Geffner D, Ross-Swain D. Auditory Processing Disorders. Plural Publishing; 2018.
  29. Bailey T. Auditory Pathways and Processes: Implications for Neuropsychological Assessment and Diagnosis of Children and Adolescents. Child Neuropsychology. 2010;16(6):521-548.  https://doi.org/10.1080/09297041003783310
  30. Фадеев К.А., Орехова Е.В. Центральные слуховые расстройства: причины, симптомы и способы преодоления дефицита в условиях учебного процесса. Современная зарубежная психология. 2024;12(4):7-21.  https://doi.org/10.17759/jmfp.2023120401
  31. Бобошко М.Ю., Гарбарук Е.С, Жилинская Е.В. и др. Центральные слуховые расстройства (обзор литературы). Российская оториноларингология. 2014;72(5):87-96. 
  32. Лопотко А.И., Бердникова И.П., Коротков Ю.В. Аудиометрический речевой экспресс-тест. Ученые записки СПбГМУ им. акад. И.П. Павлова. 2002;9(1):38-42. 
  33. Krumbholz K, Hewson-Stoate N, Schönwiesner M. Cortical Response to Auditory Motion Suggests an Asymmetry in the Reliance on Inter-Hemispheric Connections Between the Left and Right Auditory Cortices. Journal of Neurophysiology. 2007;97(2):1649-1655. https://doi.org/10.1152/jn.00560.2006
  34. Jansen S, Luts H, Wagener KC, et al. Comparison of three types of French speech-in-noise tests: A multi-center study. International Journal of Audiology. 2011;51(3):164-173.  https://doi.org/10.3109/14992027.2011.633568
  35. Бобошко М.Ю. Речевая аудиометрия: учебное пособие. Издательство СПбГМУ, 2012;64. 
  36. Alain C, Tremblay K. The Role of Event-Related Brain Potentials in Assessing Central Auditory Processing. Journal of the American Academy of Audiology. 2007;18(07):573-589.  https://doi.org/10.3766/jaaa.18.7.5
  37. Burkard RF, Sims D. The Human Auditory Brainstem Response to High Click Rates. American Journal of Audiology. 2001;10(2):53-61.  https://doi.org/10.1044/1059-0889(2001/008)
  38. Konrad-Martin D, Dille MF, McMillan G, et al. Age-Related Changes in the Auditory Brainstem Response. Journal of the American Academy of Audiology. 2012;23(1):18-35.  https://doi.org/10.3766/jaaa.23.1.3
  39. Venhovens J, Meulstee J, Bloem BR, et al. Neurovestibular analysis and falls in Parkinson’s disease and atypical parkinsonism. Foxe J, ed. European Journal of Neuroscience. 2016;43(12):1636-1646. https://doi.org/10.1111/ejn.13253
  40. Liu C, Zhang Y, Tang W, et al. Evoked potential changes in patients with Parkinson’s disease. Brain and Behavior. 2017;7(5):e00703. https://doi.org/10.1002/brb3.703
  41. Аленикова О.А., Свинковская Т.В., Лихачев С.А. Акустические стволовые вызванные потенциалы при болезни Паркинсона. Неврология и нейрохирургия. Восточная Европа. 2016;6(1):46-54.  https://doi.org/10.1111/ejn.13253
  42. Pratt H, Starr A, Michalewski HJ, et al. The auditory P50 component to onset and offset of sound. Clinical Neurophysiology. 2008;119(2):376-387.  https://doi.org/10.1016/j.clinph.2007.10.016
  43. Alhussaini K, Bohorquez J, Delgado RE, et al. Auditory brainstem, middle and late latency responses to short gaps in noise at different presentation rates. International Journal of Audiology. 2018;57(6):399-406.  https://doi.org/10.1080/14992027.2018.1428373
  44. Pratt SR, Sabo D, Durrant JD. Assessment of hearing in infants and children. Handbook of Clinical Neurophysiology. 2013;271-297.  https://doi.org/10.1016/B978-0-7020-5310-8.00014-4
  45. Çelik M, Seleker FK, Sucu H, et al. Middle latency auditory evoked potentials in patients with parkinsonism. Parkinsonism & Related Disorders. 2000;6(2):95-99.  https://doi.org/10.1016/S1353-8020(99)00056-5
  46. Green JB, Flagg L, Freed DM, et al. The middle latency auditory evoked potential may be abnormal in dementia. Neurology. 1992;42(5):1034-1036. https://doi.org/10.1212/WNL.42.5.1034
  47. Teo C, Rasco L, Skinner RD, et al. Disinhibition of the sleep state-dependent p1 potential in Parkinson’s disease-improvement after pallidotomy. Sleep Research Online. 1998;1:62-70. 
  48. De Groote E, De Keyser K, Santens P, et al. Future Perspectives on the Relevance of Auditory Markers in Prodromal Parkinson’s Disease. Frontiers in Neurology. 2020;11:689.  https://doi.org/10.3389/fneur.2020.00689
  49. Luck SJ, Kappenman ES, Cacioppo JT, et al. Electroencephalography and Event-Related Brain Potentials. Handbook of Psychophysiology. 2016;74-100.  https://doi.org/10.1017/9781107415782.005
  50. Solís-Vivanco R, Ricardo-Garcell J, Rodríguez-Camacho M, et al. Involuntary attention impairment in early Parkinson’s disease: An event-related potential study. Neuroscience Letters. 2011;495(2):144-149.  https://doi.org/10.1016/j.neulet.2011.03.058
  51. Lin FR, Ferrucci L, An Y, et al. Association of hearing impairment with brain volume changes in older adults. NeuroImage. 2014;90:84-92.  https://doi.org/10.1016/j.neuroimage.2013.12.059
  52. Dosenbach NUF, Fair DA, Cohen AL, et al. A dual-networks architecture of top-down control. Trends in Cognitive Sciences. 2008;12(3):99-105.  https://doi.org/10.1016/j.tics.2008.01.001
  53. Vaden KI, Kuchinsky SE, Ahlstrom JB, et al. Cortical Activity Predicts Which Older Adults Recognize Speech in Noise and When. Journal of Neuroscience. 2015;35(9):3929-3937. https://doi.org/10.1523/jneurosci.2908-14.2015
  54. Vaden KI, Kuchinsky SE, Cute SL, et al. The Cingulo-Opercular Network Provides Word-Recognition Benefit. Journal of Neuroscience. 2013;33(48):18979-18986. https://doi.org/10.1523/jneurosci.1417-13.2013
  55. Uchida Y, Nishita Y, Kato T, et al. Smaller Hippocampal Volume and Degraded Peripheral Hearing Among Japanese Community Dwellers. Frontiers in Aging Neuroscience. 2018;10:319.  https://doi.org/10.3389/fnagi.2018.00319
  56. Ren F, Ma W, Li M, et al. Gray Matter Atrophy Is Associated With Cognitive Impairment in Patients With Presbycusis: A Comprehensive Morphometric Study. Frontiers in Neuroscience. 2018;12:232-238.  https://doi.org/10.3389/fnins.2018.00744
  57. Belkhiria C, Vergara R, San Martín S, et al. Cingulate cortex atrophy is associated with hearing loss in presbycusis with cochlear amplifier dysfunction. Frontiers in Aging Neuroscience. 2019;11(6):34-39.  https://doi.org/10.3389/fnagi.2019.00097
  58. Gao F, Wang G, Ma W, et al. Decreased auditory GABA+ concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy. NeuroImage. 2015;106:311-316.  https://doi.org/10.1016/j.neuroimage.2014.11.023
  59. Ma W, Li M, Gao F, et al. DTI Analysis of Presbycusis Using Voxel-Based Analysis. American Journal of Neuroradiology. 2016;37(11):2110-2114. https://doi.org/10.3174/ajnr.A4870
  60. Chen YC, Chen H, Jiang L, et al. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI. Frontiers in Behavioral Neuroscience. 2018;12.  https://doi.org/10.3389/fnbeh.2018.00044
  61. Delano PH, Belkhiria C, Vergara RC, et al. Reduced suprathreshold auditory nerve responses are associated with slower processing speed and thinner temporal and parietal cortex in presbycusis. Plos One. 2020;15(5):e0233224-e0233224. https://doi.org/10.1371/journal.pone.0233224
  62. Chaudhury S, Nag TC, Jain S, et al. Role of sound stimulation in reprogramming brain connectivity. Journal of Biosciences. 2013;38(3):605-614.  https://doi.org/10.1007/s12038-013-9341-8
  63. F Lin FR, Metter EJ, O’Brien RJ, et al. Hearing Loss and Incident Dementia. Archives of Neurology. 2011;68(2):214-220.  https://doi.org/10.1001/archneurol.2010.362
  64. Musiek FE, Chermak GD. Handbook of central auditory processing disorder. Vol. 2. 2nd ed. San Diego: Plural Publishing; 2014;769. 

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.