The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kashchenko S.A.

Pirogov Russian National Research Medical University

Eranova A.A.

Rostov State Medical University

Chuguy E.V.

Siberian State Medical University

Glymphatic dysfunction and sleep disorders: indirect effects on Alzheimer’s disease

Authors:

Kashchenko S.A., Eranova A.A., Chuguy E.V.

More about the authors

Read: 4271 times


To cite this article:

Kashchenko SA, Eranova AA, Chuguy EV. Glymphatic dysfunction and sleep disorders: indirect effects on Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(4):7‑12. (In Russ.)
https://doi.org/10.17116/jnevro20241240417

Recommended articles:
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121
Non-invasive biomarkers for early diagnosis of Alzheimer’s disease in bodily fluids. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):8-16
Cyto­kine status of patients with Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4-2):5-12
Differential diagnosis of Alzheimer’s disease and vascular cognitive diso­rders. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4-2):26-35
A comprehensive study of Alzheimer’s disease biomarkers in plasma and cere­brospinal fluid. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4-2):43-53
Prospects for treating Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4-2):54-60

References:

  1. Bishir M, Bhat A, Essa MM, et al. Sleep Deprivation and Neurological Disorders. Biomed Res Int. 2020;2020:5764017. https://doi.org/10.1155/2020/5764017
  2. Dementia. WHO. Accessed December 2, 2023. https://www.who.int/news-room/fact-sheets/detail/dementia.
  3. Mihaylova NM. Late-life dementia: mortality and life expectancy. Psychiatry. 2019;17(2):54-67. (In Russ.). https://doi.org/10.30629/2618-6667-2019-17-2-54-67
  4. Cutsuridis V, Yoshida M. Editorial: Memory Processes in Medial Temporal Lobe: Experimental, Theoretical and Computational Approaches. Front Syst Neurosci. 2017;11:19.  https://doi.org/10.3389/fnsys.2017.00019
  5. Reyes-Resina I, Samer S, Kreutz MR, et al. Molecular Mechanisms of Memory Consolidation That Operate During Sleep. Front Mol Neurosci. 2021;14:767384. https://doi.org/10.3389/fnmol.2021.767384
  6. Ribeiro S, Shi X, Engelhard M, et al. Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus. Front Neurosci. 2007;1(1):43-55.  https://doi.org/10.3389/neuro.01.1.1.003.2007
  7. Giuditta A. Sleep memory processing: the sequential hypothesis. Front Syst Neurosci. 2014;8:219.  https://doi.org/10.3389/fnsys.2014.00219
  8. Tononi G, Cirelli C. Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration. Neuron. 2014;81(1):12-34.  https://doi.org/10.1016/j.neuron.2013.12.025
  9. Diering GH, Nirujogi RS, Roth RH, et al. Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science. 2017;355(6324):511-515.  https://doi.org/10.1126/science.aai8355
  10. Feld GB, Born J. Neurochemical mechanisms for memory processing during sleep: basic findings in humans and neuropsychiatric implications. Neuropsychopharmacology. 2020;45:31-44.  https://doi.org/10.1038/s41386-019-0490-9
  11. Frank MG, Heller HC. The Function(s) of Sleep. Handb Exp Pharmacol. 2019;253:3-34.  https://doi.org/10.1007/164_2018_140
  12. Hu X, Cheng LY, Chiu MH, et al. Promoting memory consolidation during sleep: A meta-analysis of targeted memory reactivation. Psychol Bull. 2020;146(3):218-244.  https://doi.org/10.1037/bul0000223
  13. Merlo E, Bekinschtein P, Jonkman S, et al. Molecular Mechanisms of Memory Consolidation, Reconsolidation, and Persistence. Neural Plast. 2015;2015:687175. https://doi.org/10.1155/2015/687175
  14. Rasch B, Born J. About sleep’s role in memory. Physiol Rev. 2013;93(2):681-766.  https://doi.org/10.1152/physrev.00032.2012
  15. Walker MP. The role of sleep in cognition and emotion. Ann N Y Acad Sci. 2009;1156:168-197.  https://doi.org/10.1111/j.1749-6632.2009.04416.x
  16. Kleim B, Wilhelm FH, Temp L, et al. Sleep enhances exposure therapy. Psychol Med. 2014;44(7):1511-1519. https://doi.org/10.1017/s0033291713001748
  17. Hutchison IC, Rathore S. The role of REM sleep theta activity in emotional memory. Front Psychol. 2015;6:1439. https://doi.org/10.3389/fpsyg.2015.01439
  18. Walker M. Why We Sleep: Unlocking the Power of Sleep and Dreams. Per. from English. Feoklistova V.M. M.: KoLibri, Azbuka-Atticus; 2021.(In Russ.).
  19. Hurtado-Alvarado G, Pavón L, Castillo-García SA, et al. Sleep loss as a factor to induce cellular and molecular inflammatory variations. Clin Dev Immunol. 2013;2013:801341. https://doi.org/10.1155/2013/801341
  20. Shokri-Kojori E, Wang G-J, Wiers CE, et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proceedings of the National Academy of Sciences. 2018;115(17):4483-4488. https://doi.org/10.1073/pnas.1721694115
  21. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. https://doi.org/10.1126/scitranslmed.3003748
  22. Oshio K. What Is the «Glymphatic System»? Magn Reson Med Sci. 2023;22(1):137-141.  https://doi.org/10.2463/mrms.bc.2021-0059
  23. Harrison IF, Ismail O, Machhada A, et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain. 2020;143(8):2576-2593. https://doi.org/10.1093/brain/awaa179
  24. Lopes DM, Llewellyn SK, Harrison IF. Propagation of tau and α-synuclein in the brain: therapeutic potential of the glymphatic system. Transl Neurodegener. 2022;11(1):19.  https://doi.org/10.1186/s40035-022-00293-2
  25. Fultz NE, Bonmassar G, Setsompop K, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 2019;366(6465):628-631.  https://doi.org/10.1126/science.aax5440
  26. Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373-377.  https://doi.org/10.1126/science.1241224
  27. Scullin MK, Gao C. Dynamic Contributions of Slow Wave Sleep and REM Sleep to Cognitive Longevity. Curr Sleep Med Rep. 2018;4(4):284-293.  https://doi.org/10.1007/s40675-018-0131-6
  28. Kroeger D, Vetrivelan R. To sleep or not to sleep — Effects on memory in normal aging and disease. Aging Brain. 2023;3:100068. https://doi.org/10.1016/j.nbas.2023.100068
  29. Hsu JL, Wei YC, Toh CH, et al. Magnetic Resonance Images Implicate That Glymphatic Alterations Mediate Cognitive Dysfunction in Alzheimer Disease. Ann Neurol. 2023;93(1):164-174.  https://doi.org/10.1002/ana.26516
  30. Taoka T, Masutani Y, Kawai H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn J Radiol. 2017;35(4):172-178.  https://doi.org/10.1007/s11604-017-0617-z
  31. Park CJ, Kim SY, Kim JH, et al. Evaluation of glymphatic system activity using diffusion tensor image analysis along the perivascular space and amyloid PET in older adults with objectively normal cognition: a preliminary study. Front Aging Neurosci. 2023;15:1221667. https://doi.org/10.3389/fnagi.2023.1221667
  32. Steward CE, Venkatraman VK, Lui E, et al. Assessment of the DTI-ALPS Parameter Along the Perivascular Space in Older Adults at Risk of Dementia. J Neuroimaging. 2021;31(3):569-578.  https://doi.org/10.1111/jon.12837
  33. Tatti E, Rossi S, Innocenti I, et al. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives. Ageing Res Rev. 2016;29:66-89.  https://doi.org/10.1016/j.arr.2016.05.006
  34. Rajji TK. Transcranial Magnetic and Electrical Stimulation in Alzheimer’s Disease and Mild Cognitive Impairment: A Review of Randomized Controlled Trials. Clin Pharmacol Ther. 2019;106(4):776-780.  https://doi.org/10.1002/cpt.1574
  35. Lynch M, Pham W, Sinclair B, et al. Perivascular spaces as a potential biomarker of Alzheimer’s disease. Front Neurosci. 2022;16:1021131. https://doi.org/10.3389/fnins.2022.1021131
  36. Lin Y, Jin J, Lv R, et al. Repetitive transcranial magnetic stimulation increases the brain’s drainage efficiency in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun. 2021;9(1):102.  https://doi.org/10.1186/s40478-021-01198-3
  37. Boespflug EL, Iliff JJ. The Emerging Relationship Between Interstitial Fluid-Cerebrospinal Fluid Exchange, Amyloid-β, and Sleep. Biol Psychiatry. 2018;83(4):328-336.  https://doi.org/10.1016/j.biopsych.2017.11.031
  38. Kondratiev AN, Tsentsiper LM. Glymphatic system of the brain: structure and practical significance. Russian Journal of Anesthesiology and Reanimatology. 2019;(6):72-80. (In Russ.). https://doi.org/10.17116/anaesthesiology201906172
  39. Yuhas D. How the brain cleans itself. Nature. 2012. Accessed November 20, 2023. https://doi.org/10.1038/nature.2012.11216
  40. Ishikawa A, Kanayama Y, Matsumura H, et al. Selective rapid eye movement sleep deprivation impairs the maintenance of long-term potentiation in the rat hippocampus. Eur J Neurosci. 2006;24(1):243-248.  https://doi.org/10.1111/j.1460-9568.2006.04874.x

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.