The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Bogolepova A.N.

Pirogov Russian National Research Medical University (Pirogov University);
Federal Center of Brain Research and Neurotechnologies;
Pirogov Russian National Research Medical University (Pirogov University)

Makhnovich E.V.

Pirogov Russian National Research Medical University (Pirogov University);
Federal Center of Brain Research and Neurotechnologies

Kovalenko E.A.

Pirogov Russian National Research Medical University (Pirogov University);
Federal Center of Brain Research and Neurotechnologies

Osinovskaya N.A.

Federal Center of Brain Research and Neurotechnologies

Beregov M.M.

Federal Center of Brain Research and Neurotechnologies

The relationship between neuropsychological indicators and neuroimaging changes according to MRI morphometry in patients with Alzheimer’s disease and glaucoma

Authors:

Bogolepova A.N., Makhnovich E.V., Kovalenko E.A., Osinovskaya N.A., Beregov M.M.

More about the authors

Read: 1131 times


To cite this article:

Bogolepova AN, Makhnovich EV, Kovalenko EA, Osinovskaya NA, Beregov MM. The relationship between neuropsychological indicators and neuroimaging changes according to MRI morphometry in patients with Alzheimer’s disease and glaucoma. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(12):142‑152. (In Russ.)
https://doi.org/10.17116/jnevro2024124121142

Recommended articles:
Cognitive impairment in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):81-90
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121
The possibilities of Mexi­dol in the complex therapy of arte­rial hype­rtension. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;(5):572-580

References:

  1. Hassouneh A, Bazuin B, Danna-dos-Santos A, et al. The Alzheimer’s Disease Neuroimaging Initiative. Feature Importance Analysis and Machine Learning for Alzheimer’s Disease Early Detection: Feature Fusion of the Hippocampus, Entorhinal Cortex, and Standardized Uptake Value Ratio. Digital Biomarkers. 2024;8(1):59-74.  https://doi.org/10.1159/000538486
  2. The World Alzheimer Report 2019: Attitudes to dementia analyses findings of the world’s largest survey on attitudes to dementia, as well as expert essays and case studies from across the world. 2019. https://www.alzheimers.net/resources/alzheimers-statistics
  3. Tahami AA, Byrnes MJ, White LA, Zhang Q. Alzheimer’s disease: epidemiology and clinical progression. Neurol Ther. 2022;11(2):553-569.  https://doi.org/10.1007/s40120-022-00338-8
  4. Wong W. Economic burden of Alzheimer disease and managed care considerations. Am J Man Care. 2020;26(8):S177-S183. https://doi.org/10.37765/ajmc.2020.88482
  5. Israilovich AE, Oybekovna, IS, Kizi CLZ. Clinical and Neurological Approach to Dementia of the Alzheimer’s Type. Central Asian J Med Nat Sci. 2023;4(1):7-11. 
  6. Alzheimer’s Association. 2019 Alzheimer’s disease Facts and Figures. Alz Dement. 2019;5(3):321-387.  https://doi.org/10.1016/j.jalz.2019.01.010
  7. Soibnazarov OE. Optimization of treatment, modifiable risk factors and modern approaches to the treatment of dementia. Boffin Academy. 2023;1(1):191-203. (In Russ.).
  8. Kent SA, SpiresJones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol. 2020;140(4):417-447.  https://doi.org/10.1007/s00401-020-02196-w
  9. Zetterberg H, Blennow K. Moving fluid biomarkers for Alzheimer’s disease from research tools to routine clinical diagnostics. Mol Neurodegener. 2021;16(1):1-7.  https://doi.org/10.1186/s13024-021-00430-x
  10. Ayodele T, Rogaeva E, Kurup JT, et al. Early-Onset Alzheimer’s Disease: What Is Missing in Research? Curr Neurol Neurosci Rep. 2021;21(2):1-10.  https://doi.org/10.1007/s11910-020-01090-y
  11. Lobzin VYu, Kolmakova KA, Emelin AYu, Yanishevskiy SN. Arterial hypertension and Alzheimer’s disease. Prologue to neurodegeneration. Arterial’naya Gipertenziya=Arterial Hypertension. 2019;25(2):122-133. (In Russ.). https://doi.org/10.18705/1607-419X-2019-25-2-122-133
  12. Erichev VP, Basinsky SN, Kuroyedov AV. Moving on to surgical stage of glaucoma treatment. Natsional’nyi zhurnal glaukoma. 2023;22(1):92-102. (In Russ.). https://doi.org/10.53432/2078-4104-2023-22-1-92-102
  13. Stein JD, Khawaja AP, Weizer JS. Glaucoma in adults—screening, diagnosis, and management: a review. JAMA. 2021;325(2):164-174.  https://doi.org/10.1001/jama.2020.21899
  14. Schuster AK, Erb C, Hoffmann EM, et al. The diagnosis and treatment of glaucoma. Deut Ärzteblatt Int. 2020;117(13):225.  https://doi.org/10.3238/arztebl.2020.0225
  15. Burton MJ, Ramke J, Marques AP, et al. The Lancet global health Commission on global eye health: vision beyond 2020. Lancet Global Health. 2021;9(4):489-551.  https://doi.org/10.1016/S2214-109X(20)30488-5
  16. Nagornova ZM, Kuroyedov AV, Petrov SY, et al. The effect of topical hypotensive therapy on ocular surface and glaucoma surgery outcomes in patients with primary open-angle glaucoma. Natsional’nyi Zhurnal Glaukoma. 2019;18(4):96-107. (In Russ.). https://doi.org/10.25700/NJG.2019.04.08
  17. Ting DS, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: the technical and clinical considerations. Prog Ret Eye Res. 2019;72:100759. https://doi.org/10.1016/j.preteyeres.2019.04.003
  18. Zhang N, Wang J, Li Y, Jiang B. Prevalence of primary open angle glaucoma in the last 20 years: a meta-analysis and systematic review. Sci Rep. 2021;11(1):13762. https://doi.org/10.1038/s41598-021-92971-w
  19. Daruich A, Duncan M, Robert MP, et al. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Ret Eye Res. 2022;101133. https://doi.org/10.1016/j.preteyeres.2022.101133
  20. Sen S, Saxena R, Tripathi M, et al. Neurodegeneration in Alzheimer’s disease and glaucoma: overlaps and missing links. Eye. 2020;34(9):1546-1553. https://doi.org/10.1038/s41433-020-0836-x
  21. Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a genetic model for hematopoiesis. Genetics. 2019;211(2):367-417.  https://doi.org/10.1534/genetics.118.300223
  22. Xu XH, Zou JY, Geng W, Wang AY. Association between glaucoma and the risk of Alzheimer’s disease: a systematic review of observational studies. Acta Ophthalmol. 2019;97(7):665-671.  https://doi.org/10.1111/aos.14114
  23. Jacobs DS, Carrasquillo KG, Cottrell PD, et al. BCLA CLEAR–Medical use of contact lenses. Contact Lens and Anterior Eye. 2021;44(2):289-329.  https://doi.org/10.1016/j.clae.2021.02.002
  24. Mroczkowska S, Shokr H, Benavente-Pérez A, et al. Retinal Microvascular Dysfunction Occurs Early and Similarly in Mild Alzheimer’s Disease and Primary-Open Angle Glaucoma Patients. J Clin Med. 2022;11(22):6702. https://doi.org/10.3390/jcm11226702
  25. Singh AK, Verma S. Use of ocular biomarkers as a potential tool for early diagnosis of Alzheimer’s disease. Ind J Ophthalmol. 2020;68(4):555.  https://doi.org/10.4103/ijo.IJO_999_19
  26. Zabel P, Kaluzny JJ, Zabel K, et al. Quantitative assessment of retinal thickness and vessel density using optical coherence tomography angiography in patients with Alzheimer’s disease and glaucoma. PLoS One. 2021;16(3):e0248284. https://doi.org/10.1371/journal.pone.0248284
  27. Desai D, Pethe P. Polycomb repressive complex 1: regulators of neurogenesis from embryonic to adult stage. J Cell Physiol. 2020;235(5):4031-4045. https://doi.org/10.1002/jcp.29299
  28. Inyushin M, Zayas-Santiago A, Rojas L, et al. Platelet-generated amyloid beta peptides in Alzheimer’s disease and glaucoma. Histol Histopathol. 2019;34(8):843. 
  29. Villalba A, Götz M, Borrell V. The regulation of cortical neurogenesis. Curr Top Develop Biol. 2021;142:1-66.  https://doi.org/10.1016/bs.ctdb.2020.10.003
  30. Rawlyk B, Chauhan BC. Retinal ganglion cell loss in postmortem tissue of Alzheimer disease, glaucoma, and healthy normal subjects. Can J Ophthalmol. 2021;56(2):e66-e70.  https://doi.org/10.1016/j.jcjo.2020.09.018
  31. Gavrilova SI. Evolution of the diagnostic frontiers of Alzheimer’s disease and new therapeutic possibilities. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(11-2):38-44. (In Russ.). https://doi.org/10.17116/jnevro202212211238
  32. Livingston G. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet. 2020;396(10248):413-446.  https://doi.org/10.1016/S0140-6736(20)30367-6
  33. Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. The Lancet. 2021;397(10284):1577-1590. https://doi.org/10.1016/S0140-6736(20)30367-6
  34. Kovtun OP, Volkova LI, Kodintsev AN. Modern aspects of diagnosing Alzheimer’s disease. Ural Medical Journal. 2019;8:5-13. (In Russ.).
  35. Zhang Y, Yang YS, Wang CM, et al. Copper metabolism-related Genes in entorhinal cortex for Alzheimer’s disease. Sci Rep. 2023;13(1):17458. https://doi.org/10.1038/s41598-023-44656-9
  36. Rahim F, Khalafi M, Davoodi M. Metabolite changes in the posterior cingulate cortex could be a signature for early detection of Alzheimer’s disease: A systematic review and meta-analysis study based on 1H-NMR. Egypt J Neurol, Psychiatr Neurosurg. 2023;59(1):60.  https://doi.org/10.1186/s41983-023-00649-z
  37. Smucny J, Dienel SJ, Lewis DA, Carter CS. Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacol. 2022;47(1):292-308.  https://doi.org/10.1038/s41386-021-01089-0
  38. Yan H, Lau WK, Eickhoff SB, et al. Charting the neural circuits disruption in inhibitory control and its subcomponents across psychiatric disorders: A neuroimaging meta-analysis. Progr Neuro-Psychopharmacol Biol Psychiatry. 2022;119:110618. https://doi.org/10.1016/j.pnpbp.2022.110618
  39. Kapultsevich AE. Artificial intelligence: the role of the hippocampus in visual information processing. Eurasian Scientific Association. 2019;58(21):40-48. (In Russ.).
  40. Kapultsevich AE. Artificial intelligence: on the issue of biological programming. Technical Sciences: Problems and Solutions. 2022;54(4):55-65. (In Russ.).
  41. Lei Z, Xie L, Li CH, et al. Chemogenetic Activation of Astrocytes in the Basolateral Amygdala Contributes to Fear Memory Formation by Modulating the Amygdala-Prefrontal Cortex Communication. Int J Mol Sci. 2022;23(11):6092. https://doi.org/10.3390/ijms23116092
  42. Suthard RL, Senne RA, Buzharsky MD, et al. Basolateral amygdala astrocytes are engaged by the acquisition and expression of a contextual fear memory. J Neurosci. 2023;43(27):4997-5013. https://doi.org/10.1523/JNEUROSCI.1775-22.2023
  43. Nadzhmitdinov OB, Shukhratbekova MKh. The role of quantitative analysis methods of magnetic resonance imaging data in the diagnosis of Alzheimer’s disease at the early stage of the disease. Economy and society. 2024;1:116. (In Russ.).
  44. Igarashi KM. Entorhinal cortex dysfunction in Alzheimer’s disease. Trends Neurosci. 2023;46(2):124-136.  https://doi.org/10.1016/j.tins.2022.11.006
  45. Garg N, Choudhry MS, Bodade RM. A review on Alzheimer’s disease classification from normal controls and mild cognitive impairment using structural MR images. J Neurosci Meth. 2023;15:109745. https://doi.org/10.1016/j.jneumeth.2022.109745
  46. Siqueira GSA, Hagemann PMS, Coelho DS, et al. Can MoCA and MMSE be interchangeable cognitive screening tools? A systematic review. Gerontologist. 2019;59(6):743-763.  https://doi.org/10.1093/geront/gny126
  47. Pépin M, Ferreira AC, Arici M, et al. Cognitive disorders in patients with chronic kidney disease: specificities of clinical assessment. Nephrol Dial Transplantation. 2022;37(2):23-32.  https://doi.org/10.1093/ndt/gfab262
  48. Pinto TCC, Machado L, Bulgacov TM, et al. Is the Montreal Cognitive Assessment (MoCA) screening superior to the Mini-Mental State Examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) in the elderly? Int Psychogeriatr. 2019;31(4):491-504.  https://doi.org/10.1159/000495562
  49. Zhuang L, Yang Y, Gao J. Cognitive assessment tools for mild cognitive impairment screening. J Neurol. 2021;268(5):1615-1622. https://doi.org/10.1007/s00415-019-09506-7
  50. Jiao F, Yi F, Wang Y, et al. The validation of multifactor model of plasma Aβ 42 and total-Tau in combination with MoCA for diagnosing probable Alzheimer disease. Front Aging Neurosci. 2020;12:212.  https://doi.org/10.3389/fnagi.2020.00212
  51. Mukhangalieva DG, Turuspekova ST. The use of screening scales in neuropsychological testing: possibilities and limitations. Bulletin of the Kazakh National Medical University. 2020;1:229-233. (In Russ.).
  52. Aizenshtein AD, Trofimova AK, Mikadze YV, Ivanova GE. Methodological Problems of Psychometric Tests in Clinical Studies of Cognitive Disorders in Patients with Cerebral Vascular Lesions: a Review. Bulletin of Rehabilitation Medicine. 2023;22(1):46-59. (In Russ.). https://doi.org/10.38025/2078-1962-2023-22-1-46-59
  53. Ilardi CR, Ilardi CR, Chieffi S, et al. The Frontal Assessment Battery 20 years later: Normative data for a shortened version (FAB15). Neurol Sci. 2022;43(3):1709-1719. https://doi.org/10.1007/s10072-021-05544-0
  54. Aiello EN, Esposito A, Appollonio I, Bolognini N. Diagnostic properties of the frontal assessment battery (FAB) in Italian healthy adults. Aging Clin Exp Res. 2022;34(5):1021-1026. https://doi.org/10.1007/s40520-021-02035-2
  55. Webster-Cordero F, Giménez-Llort L. The Challenge of Subjective Cognitive Complaints and Executive Functions in Middle-Aged Adults as a Preclinical Stage of Dementia: A Systematic Review. Geriatrics. 2022;7(2):30.  https://doi.org/10.3390/geriatrics7020030
  56. Breton A, Casey D, Arnaoutoglou NA. Cognitive tests for the detection of mild cognitive impairment (MCI), the prodromal stage of dementia: Meta‐analysis of diagnostic accuracy studies. Int J Ger Psych. 2019;34(2):233-242.  https://doi.org/10.1002/gps.5016
  57. Chen YX, Liang N, Li XL, et al. Diagnosis and treatment for mild cognitive impairment: a systematic review of clinical practice guidelines and consensus statements. Front Neur. 2021;12:719849. https://doi.org/10.3389/fneur.2021.719849
  58. Jia X, Wang Z, Huang F, et al. A comparison of the Mini-Mental State Examination (MMSE) with the Montreal Cognitive Assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: a cross-sectional study. BMC Psychiatry. 2021;21(1):1-13.  https://doi.org/10.1186/s12888-021-03495-6
  59. Jin R, Pilozzi A, Huang X. Current cognition tests, potential virtual reality applications, and serious games in cognitive assessment and non-pharmacological therapy for neurocognitive disorders. J Clin Med. 2020;9(10):3287. https://doi.org/10.3390/jcm9103287
  60. Chen FT, Etnier JL, Chan KH, et al. Effects of exercise training interventions on executive function in older adults: a systematic review and meta-analysis. Sports Med. 2020;50(8):1451-1467. https://doi.org/10.1007/s40279-020-01292-x
  61. Barberio B, Zamani M, Black CJ, et al. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: a systematic review and meta-analysis. The Lancet Gastroenterol Hepatol. 2021;6(5):359-370.  https://doi.org/10.1016/S2468-1253(21)00014-5
  62. Bisgaard TH, Allin KH, Keefer L, et al. Depression and anxiety in inflammatory bowel disease: epidemiology, mechanisms and treatment. Nature Rev Gastroenterol Hepatol. 2022;19(11):717-726.  https://doi.org/10.1038/s41575-022-00634-6
  63. Hansen JY, Shafiei G, Markello RD, et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nature Neurosci. 2022;25(11):1569-1581. https://doi.org/10.1038/s41593-022-01186-3
  64. Markello RD, Hansen JY, Liu ZQ, et al. Neuromaps: structural and functional interpretation of brain maps. Nat Meth. 2022;19(11):1472-1479. https://doi.org/10.1038/s41592-022-01625-w
  65. Sala A, Lizarraga A, Caminiti SP, et al. Brain connectomics: time for a molecular imaging perspective? Trends Cogn Sci. 2023;27(4):353-366.  https://doi.org/10.1016/j.tics.2022.11.015
  66. Hänisch B, Hansen JY, Bernhardt BC, et al. Cerebral chemoarchitecture shares organizational traits with brain structure and function. Elife. 2023;12: 83843. https://doi.org/10.7554/eLife.83843
  67. Siddiqi SH, Kording KP, Parvizi J, Fox MD. Causal mapping of human brain function. Nat Rev Neurosci. 2022;23(6):361-375.  https://doi.org/10.1038/s41583-022-00583-8
  68. Siddiqi SH, Khosravani S, Rolston JD, Fox MD. The future of brain circuit-targeted therapeutics. Neuropsychopharmacol. 2024;49(1):179-188.  https://doi.org/10.1038/s41386-023-01670-9
  69. Dudarova TI. Pathophysiology of Alzheimer’s disease. Breakthrough Scientific Research: Challenges, Limits and Opportunities: collection of articles from the International scientific and practical conference, Kazan, February 2, 2023. 2023;150-152. (In Russ.).
  70. Kolupaeva ES, Zhukova IA, Zhukova NG, et al. Clinical relevance of the brain morphometric indicators for the Alzheimer’s disease diagnosis. Practical Medicine. 2020;18(5):150-155. (In Russ.). https://doi.org/10.32000/2072-1757-2020-5-150-156
  71. Vyshegorodtsev MV. Model of Alzheimer’s treatment using modern tools for morphometric analysis of MRI data. Modern Science. 2020;3-1:286-297. (In Russ.).
  72. Artemov MV, Stanzhevsky AA. Application of magnetic resonance morphometry and positronic emission tomography in diagnosis of illness of Alzheimer. Visualization in Medicine. 2020;2(3):22-27. (In Russ.).
  73. Bogolepova AN, Vasenina EE, Gomzyakova NA, et al. Clinical Guidelines for Cognitive Disorders in Elderly and Older Patients. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(10-3):6-137. (In Russ.). https://doi.org/10.17116/jnevro20211211036
  74. Stulov IK, Ananyeva NI, Lukina LV, et al. Method of differential diagnosis of mild cognitive impairment of various origins: cross sectional study. Diagnostic Radiology and Radiotherapy. 2023;14(2):64-73. (In Russ.). https://doi.org/10.22328/2079-5343-2023-14-2-64-73
  75. Ma D, Fetahu IS, Wang M, et al. The fusiform gyrus exhibits an epigenetic signature for Alzheimer’s disease. Clin Epigenetics. 2020;27(1):129.  https://doi.org/10.1186/s13148-020-00916-3
  76. Wang Y, Wang X, Zhou J, et al. Brain morphological alterations of cerebral cortex and subcortical nuclei in high-tension glaucoma brain and its associations with intraocular pressure. Neuroradiol. 2020;62:495-502.  https://doi.org/10.1007/s00234-019-02347-1

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.