The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Bogolepova A.N.

Pirogov Russian National Research Medical University;
Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency

Makhnovich E.V.

Pirogov Russian National Research Medical University;
Federal Center of Brain Research and Neurotechnologies

Kovalenko E.A.

Pirogov Russian National Research Medical University;
Federal Center of Brain Research and Neurotechnologies

Osinovskaya N.A.

Federal Center of Brain Research and Neurotechnologies

Potential biomarkers of early diagnosis of Alzheimer’s disease

Authors:

Bogolepova A.N., Makhnovich E.V., Kovalenko E.A., Osinovskaya N.A.

More about the authors

Read: 3804 times


To cite this article:

Bogolepova AN, Makhnovich EV, Kovalenko EA, Osinovskaya NA. Potential biomarkers of early diagnosis of Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(9):7‑14. (In Russ.)
https://doi.org/10.17116/jnevro20221220917

Recommended articles:
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121
Non-invasive biomarkers for early diagnosis of Alzheimer’s disease in bodily fluids. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):8-16
Non-invasive auto­mated methods for the diagnosis of periorbital skin tumors. Russian Annals of Ophthalmology. 2024;(5):137-145

References:

  1. Solovyova AP, Goryachev DV, Arkhipov VV. Criteria for assessing cognitive impairment in clinical trials. Vedomosti Nauchnogo Centra Ekspertizy Sredstv Medicinskogo Primeneniya. 2018;8(4):218-230. (In Russ.). https://doi.org/10.30895/1991-2919-2018-8-4-218-230
  2. Gupta N, Fong J, Ang LC, Yucel YH. Retinal tau pathology in human glaucomas. Can J Ophthalmol. 2008;43(1):53-60.  https://doi.org/10.3129/i07-185
  3. McKinnon SJ. Glaucoma: ocular Alzheimer’s disease. Front Biosci. 2003;8(11):1140-1156. https://doi.org/10.2741/1172
  4. Yücel YH, Gupta N, Zhang Q, et al. Loss of neurons in magnocellular and parvocellular layers of geniculate nucleus in glaucoma. Arch Ophthalmol. 2000;118(3):378-384.  https://doi.org/10.1001/ARCHOPHT.118.3.378
  5. Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9(1):119-128.  https://doi.org/10.1016/S1474-4422(09)70299-6
  6. Ashton NJ, Schöll M, Heurling K, et al. Update on biomarkers for amyloid pathology in Alzheimer’s disease. Biomark Med. 2018;12(7):799-812.  https://doi.org/10.2217/bmm-2017-0433
  7. Janelidze S, Pannee J, Mikulskis A, et al. Concordance between different amyloid immunoassays and visual amyloid positron emission tomographic assessment. JAMA Neurol. 2017;74(12):1492-501.  https://doi.org/10.1001/jamaneurol.2017.2814
  8. Naumenko AA, Gromova DO, Trofimova NV, et al. Diagnosis and treatment of Alzheimer’s disease. Neurology, Neuropsychiatry, Psychosomatics. 2016;8(4):91-97. (In Russ.).
  9. Lim JK, Li QX, He Z, et al. The Eye as a Biomarker for Alzheimer’s Disease. Front Neurosci. 2016;17(10):536.  https://doi.org/10.3389/fnins.2016.00536
  10. Kozlovsky SA, Velichkovsky BB, Vartanov AV, et al. The role of areas of the cingular cortex in the functioning of human memory. Exp Psyhol. 2012;5(1):12-22. (In Russ.).
  11. Gauthier S, Cummings J, Ballard C, et al. Management of behavioral problems in Alzheimer’s disease. Int Psychogeriatr. 2010;22(3):346-72.  https://doi.org/10.1017/S1041610209991505
  12. Bruen PD, McGeown WJ, Shanks MF, Venneri A. Neuroanatomical correlates of neuropsychiatric symptoms in Alzheimer’s disease. Brain. 2008;131(9):2455-2463. https://doi.org/10.1093/brain/awn151
  13. Lobzin VYu, Kiselev VN, Fokin VA, et al. Application of magnetic resonance morphometry in the diagnosis of Alzheimer’s disease and vascular cognitive disorders. Vestnik Rossiyskoy Voenno-Meditsinskoy Akademii (Bulletin of the Russian Military Medical Academy). 2013;3:43. (In Russ.).
  14. Bayer AU, Ferrari F, Erg C. High Occurrence Rate of Glaucoma among Patients with Alzheimer’s Disease. Eur Neurol. 2002;47(3):165-168.  https://doi.org/10.1159/000047976
  15. Bogolepova AN, Makhnovich EV, Zhuravleva AN. Comorbidity of Alzheimer’s disease and gegontophtalmic pathology. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2019;119(9):17-22. (In Russ.). https://doi.org/10.17116/jnevro201911909117
  16. Bogolepova AN, Makhnovich EV, Jyravleva AN. The relationship between cognitive impairment and changes in retinal neuroarchitectonics. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2020;120(9):7-13. (In Russ.). https://doi.org/10.17116/jnevro20201200917
  17. Armstrong RA. Visual field defects in Alzheimer’s disease patients may reflect differential pathology in the primary visual cortex. Optom Vis Sci Off Publ Am Acad Optom. 1996;73(11):677-682.  https://doi.org/10.1097/00006324-199611000-00001
  18. Chan VT, Sun Z, Tang S, et al. Spectral-domain OCT measurements in Alzheimer’s disease: a systematic review and meta-analysis. Ophthalmol. 2019;126(4):497-510.  https://doi.org/10.1016/j.ophtha.2018.08.009
  19. Thomson KL, Cameron JR, Pal S. A systematic review and meta-analysis of retinal nerve fiber layer change in dementia, using optical coherence tomography. Alzheimer’s Dement. Diagnosis, Assess. Dis Monit. 2015;1(2):136-143.  https://doi.org/10.1016/j.dadm.2015.03.001
  20. Fujino Y, Delucia MW, Davies P, Dickson DW. Ballooned neurones in the limbic lobe are associated with Alzheimer type pathology and lack diagnostic specificity. Neuropathology Appl Neurobiol. 2004;30(6):676-682. 
  21. Enriched VP, Panyushkina LA, Fomin AV. Optical coherence tomography of the retina and optic nerve in the diagnosis of Alzheimer’s disease. Glaucoma. 2013;1:5-10. (In Russ.).
  22. Knoll B, Simonett J, Volpe NJ, et al. Retinal nerve fiber layer thickness in amnestic mild cognitive impairment: Case-control study and meta-analysis. Alzheimer’s Dement. 2016;4(2):85-93.  https://doi.org/10.1016/j.dadm.2016.07.004
  23. Mendez MF, Turner J, Gilmore GC, et al. Balint’s syndrome in Alzheimer’s disease: visuospatial functions. Intl J Neurosci. 1990;3-4 (54):339-346. 
  24. Criscuolo C, Cerri E, Fabiani C, et al. The retina as a window to early dysfunctions of Alzheimer’s disease following studies with a 5xFAD mouse model. Neurobiol Aging. 2018;(67):181-188.  https://doi.org/10.1016/j.neurobiolaging.2018.03.017
  25. Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, et al. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage. 2011;54(1):204-217. 
  26. Gupta VK, Chitranshi N, Gupta VB, et al. Amyloid beta accumulation and inner retinal degenerative changes in Alzheimer’s disease transgenic mouse. Neurosci Lett. 2016;623:52-56. 
  27. Koronyo Y, Biggs D, Barron E, et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight. 2017;2:93621. https://doi.org/10.1172/jci.insight.93621
  28. Lee S, Jiang K, McIlmoyle B, et al. Amyloid Beta Immunoreactivity in the Retinal Ganglion Cell Layer of the Alzheimer’s Eye. Front Neurosci. 2020;14:758.  https://doi.org/10.3389/fnins.2020.00758
  29. La MC, Ross-Cisneros FN, Koronyo Y, et al. Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann Neurol. 2016;79:90-109.  https://doi.org/10.1002/ana.24548
  30. den Haan J, Morrema THJ, Verbraak FD, et al. Amyloid-beta and phosphorylated tau in post-mortem Alzheimer’s disease retinas. Acta Neuropathol Commun. 2018;6:147.  https://doi.org/10.1186/s40478-018-0650-x
  31. Yoneda S, Hara H, Hirata A, et al. Vitreous fluid levels of beta-amyloid ((1-42)) and tau in patients with retinal diseases. Jpn J Ophthalmol. 2005;49(2):106-108.  https://doi.org/10.1007/s10384-004-0156-x
  32. Nucci C, Martucci A, Martorana A, et al. Glaucoma progression associated with altered cerebral spinal fluid levels of amyloid beta and tau proteins. Clin Exp Ophthalmol. 2011;39(3):279-281.  https://doi.org/10.1111/j.1442-9071.2010.02452.x
  33. Ashton NJ, Leuzy A, Karikari TK, et al. The validation status of blood biomarkers of amyloid and phospho-tau assessed with the 5-phase development framework for AD biomarkers. European J Nucl Med Mol Imaging. 2021;48(7):2140-2156. https://doi.org/10.1007/s00259-021-05253-y
  34. Kaneko N, Nakamura A, Washimi Y, et al. A novel plasma biomarker surrogated by cerebral amyloid deposition. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90(9):353-364.  https://doi.org/10.2183/pjab.90.353
  35. Ovod V, Ramsey KN, Mawuenyega KG, et al. Amyloid beta concentrations and stable isotope labeling kinetics of human plasma specific for central nervous system amyloidosis. Alzheimers Dement. 2017;13(8):841-849.  https://doi.org/10.1016/j.jalz.2017.06.2266
  36. Nakamura A, Kaneko N, Willemagne VL, et al. Highly effective biomarkers of amyloid-beta in blood plasma for Alzheimer’s disease. Nature. 2018;554(7691):249-254.  https://doi.org/10.1038/nature25456
  37. Fandos N, Perez-Grijalba V, Pesini P, et al. Plasma amyloid beta 42/40 ratios as biomarkers for amyloid beta cerebral deposition in cognitively normal individuals. Alzheimers Dement (Amst). 2017;8:179-187.  https://doi.org/10.1016/j.dadm.2017.07.004
  38. Janelidze S, Stomrud E, Palmqvist S. Plasma beta-amyloid in Alzheimer’s disease and vascular disease. Sci Rep. 2016;6:26801. https://doi.org/10.1038/srep26801
  39. Rembach A, Faux NG, Watt AD. Changes in plasma amyloid beta in a longitudinal study of aging and Alzheimer’s disease. Alzheimers Dement. 2014;10:53-61.  https://doi.org/10.1016/j.jalz.2012.12.006
  40. Toledo JB, Vanderstichele H, Figurski M. Factors affecting Abeta plasma levels and their utility as biomarkers in ADNI. Acta Neuropathol. 2011;122:401-413.  https://doi.org/10.1007/s00401-011-0861-8.
  41. Devanand DP, Schupf N, Stern Y. Plasma Abeta and PET PiB binding are inversely related in mild cognitive impairment. Neurology. 2011;77:125-131.  https://doi.org/10.1212/WNL.0b013e318224afb7
  42. Lui JK, Laws SM, Li QX. Plasma amyloid-beta as a biomarker in Alzheimer’s disease: the AIBL study of aging. J Alzheimers Dis. 2010;20:1233-1242. https://doi.org/10.3233/JAD-2010-090249
  43. Swaminathan S, Risacher SL, Yoder KK. Association of plasma and cortical amyloid beta is modulated by APOE epsilon4 status. Alzheimers Dement. 2014;10:9-18.  https://doi.org/10.1016/j.jalz.2013.01.007
  44. Perez-Grijalba V, Romero J, Pesini P. Plasma AB42/40 ratio detects early stages of Alzheimer’s disease and correlates with CSF and neuroimaging biomarkers in the AB255 study. JPAD. 2019;6:34-41.  https://doi.org/10.14283/jpad.2018.41
  45. Palmqvist S, Janelidze S, Stomrud E, et al. Performance of fully automated plasma assays as screening tests for Alzheimer disease-related beta-amyloid status. JAMA Neurol Epub. 2019;76(9):1060-1069. https://doi.org/10.1001/jamaneurol.2019.1632
  46. Yaffe K, Weston A, Graff-Radford NR. Association of plasma beta-amyloid level and cognitive reserve with subsequent cognitive decline. JAMA. 2011;305:261-266.  https://doi.org/10.1001/jamaneurol.2019.1632
  47. Abdullah L, Luis C, Paris D. Serum Abeta levels as predictors of conversion to mild cognitive impairment in an ADAPT subcohort. Mol Med. 2009;15:432-437.  https://doi.org/10.2119/molmed.2009.00083
  48. Chouraki V, Beiser A, Younkin L. Plasma amyloid-beta and risk of Alzheimer’s disease in the Framingham Heart Study. Alzheimers Dement. 2015;11:249-257.  https://doi.org/10.1016/j.jalz.2014.07.001
  49. Graff-Radford NR, Crook JE, Lucas J. Association of low plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch Neurol. 2007;64:354-362.  https://doi.org/10.1001/archneur.64.3.354
  50. Lambert JC, Schraen-Maschke S, Richard F. Association of plasma amyloid beta with risk of dementia: the prospective Three-City Study. Neurology. 2009;73:847-853.  https://doi.org/10.1212/WNL.0b013e3181b78448
  51. van Oijen M, Hofman A, Soares HD, et al. Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol. 2006;5:655-660.  https://doi.org/10.1016/S1474-4422(06)70501-4
  52. Doecke JD, Pérez-Grijalba V, Fandos N, et al. Total Aβ42/Aβ40 ratio in plasma predicts amyloid-PET status, independent of clinical AD diagnosis. AIBL Research Group Neurology. 2020;94(15):1580-1589. https://doi.org/10.1212/WNL.0000000000009240
  53. Benussi A, Karikari TK, Ashton N, et al. Diagnostic and prognostic value of serum NfL and p-Tau181 in frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry. 2020;91(9):960-967.  https://doi.org/10.1136/jnnp-2020-323487
  54. Thijssen EH, La Joie R, Wolf A, et al. Treatment for frontotemporal lobar degeneration, diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med. 2020;26(3):387-297.  https://doi.org/10.1038/s41591-020-0762-2
  55. Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2020;324(8):772-781.  https://doi.org/10.1001/jama.2020.12134
  56. Janelidze S, Mattsson N, Palmqvist S, et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med. 2020;26(3):379-386.  https://doi.org/10.1038/s41591-020-0755-1
  57. Lantero Rodriguez J, Karikari TK, Suarez-Calvet M, et al. Plasma p-tau181 predicts Alzheimer’s disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline. Acta Neuropathol. 2020;140(3):267-278.  https://doi.org/10.1007/s00401-020-02195-x
  58. Simrén J, Leuzy A, Karikari TK, et al. The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer’s disease. Alzheimers Dement. 2021;17(7):1145-1156. https://doi.org/10.1002/alz.12283
  59. Jęśko H, Wencel P, Strosznajder RP, et al. Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res. 2017;42(3):876-890.  https://doi.org/10.1007/s11064-016-2110-y
  60. Morris B. Seven sirtuins for seven deadly diseases of aging. Free Radical Biology and Medicine. 2013;56:133-171.  https://doi.org/10.1016/j.freeradbiomed.2012.10.525
  61. Finkel T, Deng C-X, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460(72550):587-591.  https://doi.org/10.1038/nature08197
  62. Balaiya S, Abu-Amero K.K, Kondkar A A, Chalam K V. Sirtuins expression and their role in retinal diseases. Oxid Med Cell Longevity. 2017;2017:3187594. https://doi.org/10.1155/2017/3187594
  63. Kahraman AN, Toklu HZ. (The Effects of Sirtuin Activators on Cerebral White Matter, Redox Biomarkers, and Imaging Findings in Aging Brain. In: Çakatay U. (eds) Redox Signaling and Biomarkers in Ageing. Healthy Ageing and Longevity. Springer, Cham. 2022;15:303-322.  https://doi.org/10.1007/978-3-030-84965-8_14
  64. Pradhan R, Singh AK, Kumar P, et al. Blood circulatory level of seven sirtuins in Alzheimer’s disease: Potent biomarker based on translational research. Mol Neurobiol. 2022;7:34-39.  https://doi.org/10.1007/s12035-021-02671-9
  65. Julien C, Tremblay C, Émond V, et al. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. Journal of Neuropathology & Experimental Neurology. 2009;68(1):48-58.  https://doi.org/10.1097/NEN.0b013e3181922348
  66. Alhazzazi TY, Kamarajan P, Verdin E, Kapila YL. Sirtuin-3 (SIRT3) and the Hallmarks of Cancer. Genes Cancer. 2013;4:164-171.  https://doi.org/10.1177/1947601913486351
  67. Hirschey MD, Shimazu T, Huang JY, et al. SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:267-277.  https://doi.org/10.1101/sqb.2011.76.010850
  68. Mattsson N, Insel PS, Aisen PS, et al. and Alzheimer’s Disease Neuroimaging Initiative. Brain structure and function as mediators of the effects of amyloid on memory. Neurology. 2015;84:1136-1144. https://doi.org/10.1212/WNL.0000000000001375
  69. Ossenkoppele R, van der Flier WM, Verfaillie SC, et al. Long-term effects of amyloid, hypometabolism, and atrophy on neuropsychological functions. Neurology. 2014;82:1768-1775. https://doi.org/10.1212/WNL.0000000000000432
  70. Klupp E, Grimmer T, Tahmasian M, et al. Prefrontal hypometabolism in Alzheimer disease is related to longitudinal amyloid accumulation in remote brain regions. J Nucl Med. 2015;56:399-404.  https://doi.org/10.2967/jnumed.114.149302
  71. Laforce RJ, Tosun D, Ghosh P, et al. Parallel ICA of FDG-PET and PiB-PET in three conditions with underlying Alzheimer’s pathology. Neuroimage Clin. 2014;4:508-516.  https://doi.org/10.1016/j.nicl.2014.03.005
  72. Alexander GE, Chen K, Pietrini P, et al. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatry. 2002;159:738-745.  https://doi.org/10.1176/appi.ajp.159.5.738
  73. Reiman EM, Caselli RJ, Yun LS, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med. 1996;334:752-758.  https://doi.org/10.1056/NEJM199603213341202
  74. Yin J, Han P, Song M, et al. Amyloid-β Increases 2882 AGING Tau by Mediating Sirtuin 3 in Alzheimer’s Disease. Mol Neurobiol. 2018;55:8592-8601. https://doi.org/10.1007/s12035-018-0977-0
  75. Han P, Tang Z, Yin J, et al. Pituitary adenylate cyclase-activating polypeptide protects against β-amyloid toxicity. Neurobiol Aging. 2014;35:2064-2071. https://doi.org/10.1016/j.neurobiolaging.2014.03.022
  76. Yin JX, Maalouf M, Han P, et al. Ketones block amyloid entry and improve cognition in an Alzheimer’s model. Neurobiol Aging. 2016;39:25-37.  https://doi.org/10.1016/j.neurobiolaging.2015.11.018
  77. Toiber D, Erdel F, Bouazoune K, et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell. 2013;51:454-468.  https://doi.org/10.1016/j.molcel.2013.06.018
  78. Kaluski S, Portillo M, Besnard A, et al. Neuroprotective functions for the histone deacetylase SIRT6. Cell reports. 2017;18(13):3052-3062. https://doi.org/10.1016/j.celrep.2017.03.008
  79. Mohamad Nasir NF, Zainuddin A, Shamsuddin S. Emerging roles of Sirtuin 6 in Alzheimer’s disease. J Mol Neurosci. 2018;64(2):157-161.  https://doi.org/10.1007/s12031-017-1005-y
  80. Pukhalskaia AE, Dyatlova AS, Linkova NS, et al. Sirtuins as Possible Predictors of Aging and Alzheimer’s Disease Development: Verification in the Hippocampus and Saliva. Bull Exp Biol Med. 2020;169(6):821-824.  https://doi.org/10.1007/s10517-020-04986-4
  81. Yang J, Kong X, Martins-Santos ME, et al. Activation of SIRT1 by Resveratrol Represses Transcription of the Gene for Cytosolic Form of Phosphoenolpyruvate Carboxykinase by Deacetylating Hepatic Nuclear Factor 4α*. J Biol Chem. 2009;284:27042-27053. https://doi.org/10.1074/jbc.M109.047340
  82. Sidorova-Darmos E, Wither RG, Shulyakova N, et al. Differential expression of sirtuin family members in the developing, adult, and aged rat brain. Front Aging Neurosci. 2014;18(6):333.  https://doi.org/10.3389/fnagi.2014.00333
  83. Ames A 3rd, Li YY. Energy requirements of glutamatergic pathways in rabbit retina. J Neurosci. 1992;12(11):4234-4142. https://doi.org/10.1523/JNEUROSCI.12-11-04234.1992
  84. Niven JE, Laughlin SB. Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol. 2008;211(11):1792-804.  https://doi.org/10.1242/jeb.017574
  85. Ban N, Ozawa Y, Inaba T, et al. Light-dark condition regulates sirtuin mRNA levels in the retina. Exp Gerontol. 2013;48(11):1212-1217. https://doi.org/10.1016/j.exger.2013.04.010
  86. Peng CH, Chang YL, Kao CL, et al. SirT1-A sensor for monitoring self-renewal and aging process in retinal stem cells. Sensors (Basel). 2010;10:6172-6194. https://doi.org/10.3390/s100606172
  87. Mimura T, Kaji Y, Noma H, et al. The role of SIRT1 in ocular aging. Exp Eye Res. 2013;34(8):11617-11626. https://doi.org/10.1016/j.exer.2013.07.017
  88. Zeng Y, Yang K. Sirtuin 1 participates in the process of age-related retinal degeneration. Biochem Biophys Res Commun. 2015;468(1-2):167-172.  https://doi.org/10.1016/j.bbrc.2015.10.139
  89. Trovato Salinaro A, Cornelius C, Koverech G. Cellularstress response, redox status, and vitagenes in glaucoma: a systemic oxidant disorder linked to alzheimer’s disease. Front Pharmacol. 2014;5:29-32.  https://doi.org/10.3389/fphar.2014.00129
  90. Yucel Gencoglu A, Irkec M, Kocabeyoglu S, Dikmen ZG, Karakaya J, Konstas AGP. Plasma levels of sirtuin and adiponectin in patients with primary open-angle glaucoma, exfoliative glaucoma, and healthy controls. Eur J Ophthalmol. 2021;8:11206721211065216. https://doi.org/10.1177/11206721211065216

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.