OBJECTIVE
To study the ultrastructure of microglia adjacent to oligodendrocytes in white matter of the prefrontal cortex in continuous schizophrenia (CSch) as compared to controls and attack-like schizophrenia (ASch) and to perform correlation analysis between the parameters of microglia and adjacent oligodendrocytes previously detected in both clinical types of schizophrenia.
MATERIAL AND METHODS
Electron microscopic morphometric study of microglia adjacent to oligodendrocytes was performed in postmortem white matter of the prefrontal cortex (BA10) in 9 cases of CSch, 8 cases of ASch and 20 healthy controls. Group comparisons were made by ANCOVA and Pearson correlation analyses.
RESULTS
The reduction of volume fraction (Vv) and the number of mitochondria in microglia was found in elderly subjects (>50 y.o.) as compared to young controls (60%, p<0.05), and the increase in these parameters of lipofuscin granules were detected in elderly subjects as compared to elderly controls in CSch (470%, 606%, p<0.001). Vv and the number of mitochondria in microglia correlated negatively with area of heterochromatin in microglia (r≥–0.7, p<0.05), and area of lipofuscin correlated positively with area of heterochromatin in microglia (r=0.76, p<0.05) and with illness duration (r=0.7, p<0.05) only in the CSch group. The numerical density of microglia was not changed in both schizophrenia groups. Area of heterochromatin was increased in both groups as compared to controls (p<0.05) and correlated negatively with the numerical density of microglia in the CSch group. The number of mitochondria in oligodendrocytes (reduced in CSch) correlated positively with the number of mitochondria in microglia and negatively with Vv of lipofuscin granules in microglia and with area of microglial nucleus only in the CSch group.
CONCLUSION
Specific features of CSch as compared to ASch might be associated with the disturbances of mitochondrial and lipid metabolism in microglia, dysfunction of nucleus and accelerated aging of microglia that might lead to alterations of mitochondrial metabolism in oligodendrocytes.