The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Belova O.V.

NRC 'Kurchatov Institute', Moscow, Russia

Aref'eva T.I.

Institut klinicheskoĭ kardiologii im. A.L. Miasnikova FGBU "Rossiĭskiĭ kardiologicheskiĭ nauchno-proizvodstvennyĭ kompleks" Minzdrava Rossii, Moskva

Moskvina S.N.

NRC 'Kurchatov Institute', Moscow, Russia

Immunological aspects of Parkinson’s disease

Authors:

Belova O.V., Aref'eva T.I., Moskvina S.N.

More about the authors

Read: 5772 times


To cite this article:

Belova OV, Aref'eva TI, Moskvina SN. Immunological aspects of Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(2):110‑119. (In Russ.)
https://doi.org/10.17116/jnevro2020120021110

Recommended articles:
Diagnosis and treatment approaches for sialorrhea in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(10):29-34
The role of immuno-inflammatory factors in the deve­lopment of nega­tive symptoms in schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):42-48
Neurochemical mechanisms of tremor in Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):64-72
Cognitive impairment in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):81-90
Bladder dysfunction in patients with stages I—III of Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):91-99

References:

  1. Levin OS, Fedorova NV. Bolezn’ Parkinsona. 5 ed. M.: MEDpress-inform; 2015. (In Russ.)
  2. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896-912. https://doi.org/10.1016/S0140-6736(14)61393-3
  3. Hecht AB, Popov GR, Gudkov AA, Korshunova ES, Boldyreva EA, Gusev EI. Parkinson’s Disease: clinical features, diagnosis and treatment. In: Ugrumov M.V., eds. Neurodegenerative diseases: from genome to the whole organism. M.: Scientific World; 2014. (In Russ.)
  4. Papagno C, Trojano L. Cognitive and behavioral disorders in Parkinson’s disease:an update. I: cognitive impairments. Neurol Sci. 2018;39(2):215-223. https://doi.org/10.1007/s10072-017-3154-8
  5. Trojano L, Papagno C. Cognitive and behavioral disorders in Parkinson’s disease: an update. II: behavioral disorders. Neurol Sci. 2018;39(1):53-61. https://doi.org/10.1007/s10072-017-3155-7
  6. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA. 1998;95(11):6469-6473. https://doi.org/10.1073/pnas.95.11.6469
  7. Jellinger KA. Morphological substrates of parkinsonism with and without dementia: a retrospective clinico-pathological study. J Neural Transm Suppl. 2007;72:91-104.
  8. Pchelina SN, Emelyanov AK. Alpha-synuclein as a biomarker of Parkinson’s disease. In: Ugrumov M.V., eds. Neurodegenerative diseases: from genome to the whole organism. M.: Scientific World; 2014. (In Russ.)
  9. Cacabelos R. Parkinson’s Disease: From Pathogenesis to Pharmacogenomics. Int J Mol Sci. 2017;18(3). pii: E551. https://doi.org/10.3390/ijms18030551
  10. Ugrumov MV. Translational, personalized and preventive medicine as a basis for the fight against neurodegenerative diseases. In: Ugrumov M.V., eds. Neurodegenerative diseases: from genome to the whole organism. M.: Scientific World; 2014. (In Russ.)
  11. Illarioshkin SN. Modern view on etiology of Parkinson’s diseases. Nevrologicheskiy Zhurnal. 2015;20(4):4-13. (In Russ.) https://doi.org/10.18821/1560-9545-2015-20-4-4-13
  12. Ponomarev VV, Boyko AV, Ionova OA. Laboratory biomarkers of early diagnosis of Parkinson’s disease. Mezhdunarodnyj nevrologicheskiy zhurnal. 2016;81(3):17-22. (In Russ.)
  13. Cookson MR. alpha-Synuclein and neuronal cell death. Mol Neurodegener. 2009;4:9. https://doi.org/10.1186/1750-1326-4-9
  14. Watson MB, Richter F, Lee SK, Gabby L, Wu J, Masliah E, Effros RB, Chesselet MF. Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp Neurol. 2012;237(2):318-334. https://doi.org/10.1016/j.expneurol.2012.06.025
  15. Emmer KL, Waxman EA, Covy JP, Giasson BI. E46K human alpha-synuclein transgenic mice develop Lewy-like and tau pathology associated with age-dependent, detrimental motor impairment. J Biol Chem. 2011;286(40):35104-35118. https://doi.org/10.1074/jbc.M111.247965
  16. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000;290(5493):985-989. https://doi.org/10.1126/science.290.5493.985
  17. Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM. Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci. 2008;28(30):7687-7698. https://doi.org/10.1523/JNEUROSCI.0143-07.2008
  18. Theodore S, Cao S, McLean PJ, Standaert DG. Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol. 2008;67(12):1149-1158. https://doi.org/10.1097/NEN.0b013e31818e5e99
  19. Kosloski LM, Ha DM, Hutter JA, Stone DK, Pichler MR, Reynolds AD, Gendelman HE, Mosley RL. Adaptive immune regulation of glial homeostasis as an immunization strategy for neurodegenerative diseases. J Neurochem. 2010;114(5):1261-1276. https://doi.org/10.1111/j.1471-4159.2010.06834.x
  20. De Virgilio A, Greco A, Fabbrini G, Inghilleri M, Rizzo MI, Gallo A, Conte M, Rosato C, Appiani CM, de Vincentiis M. Parkinson’s disease: autoimmunity and neuroinflammation. Autoimmun Rev. 2016;15(10):1005-1011. https://doi.org/10.1016/j.autrev.2016.07.022
  21. Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76(2):77-98. https://doi.org/10.1016/j.pneurobio.2005.06.004
  22. Calabrese V, Santoro A, Monti D, Crupi R, Di Paola R, Latteri S, Cuzzocrea S, Zappia M, Giordano J, Calabrese EJ, Franceschi C. Aging and Parkinson’s Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic Biol Med. 2018;115:80-91. https://doi.org/10.1016/j.freeradbiomed.2017.10.379
  23. Schneider LS, Mangialasche F, Andreasen N, Feldman H, Giacobini E, Jones R, Mantua V, Mecocci P, Pani L, Winblad B, Kivipelto M. Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J Intern Med. 2014;275(3):251-283. https://doi.org/10.1111/joim.12191
  24. Pizza V, Agresta A, D’Acunto CW, Festa M, Capasso A. Neuroinflamm-aging and neurodegenerative diseases: an overview. CNS Neurol Disord Drug Targets. 2011;10(5):621-634. https://doi.org/10.2174/187152711796235014
  25. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener. 2009;4:47. https://doi.org/10.1186/1750-1326-4-47
  26. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006;12(9):1005-1015. https://doi.org/10.1038/nm1484
  27. Blandini F, Mangiagalli A, Cosentino M, Marino F, Samuele A, Rasini E, Fancellu R, Martignoni E, Riboldazzi G, Calandrella D, Frigo GM, Nappi G. Peripheral markers of apoptosis in Parkinson’s disease: the effect of dopaminergic drugs. Ann NY Acad Sci. 2003;1010:675-678. https://doi.org/10.1196/annals.1299.123
  28. Liu B, Hong JS: Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther. 2003;304(1):1-7. https://doi.org/10.1124/jpet.102.035048
  29. Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett. 1994,165(1-2):208-210. https://doi.org/10.1016/0304-3940(94)90746-3
  30. Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol. 2007;208(1):1-25. https://doi.org/10.1016/j.expneurol.2007.07.004
  31. Yamada T, McGeer PL, McGeer EG. Lewy bodies in Parkinson’s disease are recognized by antibodies to complement proteins. Acta Neuropathol. 1992;84(1):100-104. https://doi.org/10.1007/BF00427222
  32. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T. Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett. 1996;211(1):13-16. https://doi.org/10.1016/0304-3940(96)12706-3
  33. Karpenko MN, Vasilishina AA, Gromova EA, Muruzheva ZM, Bernadotte A. Interleukin-1β, interleukin-1 receptor antagonist, interleukin-6, interleukin-10, and tumor necrosis factor-α levels in CSF and serum in relation to the clinical diversity of Parkinson’s disease. Cell Immunol. 2018;327:77-82. https://doi.org/10.1016/j.cellimm.2018.02.011
  34. Koziorowski D, Tomasiuk R, Szlufik S, Friedman A. Inflammatory cytokines and NT-proCNP in Parkinson’s disease patients. Cytokine. 2012;60(3):762-766. https://doi.org/10.1016/j.cyto.2012.07.030
  35. Chen H, O’Reilly EJ, Schwarzschild MA, Ascherio A. Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am J Epidemiol. 2008;167:90-95. https://doi.org/10.1093/aje/kwm260
  36. Stojkovska I, Wagner BM, Morrison BE. Parkinson’s disease and enhanced inflammatory response. Exp Biol Med (Maywood). 2015;240(11):1387-1395. https://doi.org/10.1177/1535370215576313
  37. Herrera AJ, Castano A, Venero JL, Cano J, Machado A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis. 2000;7(4):429-447. https://doi.org/10.1006/nbdi.2000.0289
  38. Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A. The inflammatory reaction following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication in mouse. Exp Neurol. 1999;156(1):50-61. https://doi.org/10.1006/exnr.1998.6993
  39. Czlonkowska A, Kohutnicka M, Kurkowska-Jastrzebska I, Czlonkowski A. Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration. 1996;5(2):137-143. https://doi.org/10.1006/neur.1996.0020
  40. Mogi M, Togari A, Tanaka K, Ogawa N, Ichinose H, Nagatsu T. Increase in level of tumor necrosis factor-alpha in 6-hydroxydopamine-lesioned striatum in rats is suppressed by immunosuppressant FK506. Neurosci Lett. 2000;289(3):165-168. https://doi.org/10.1016/S0304-3940(00)01275-1
  41. McCoy MK, Martinez TN, Ruhn KA, Szymkowski DE, Smith CG, Botterman BR, Tansey KE, Tansey MG. Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. J Neurosci. 2006;26(37):9365-9375. https://doi.org/10.1523/JNEUROSCI.1504-06.2006
  42. Quintero EM, Willis L, Singleton R, Harris N, Huang P, Bhat N, Granholm AC. Behavioral and morphological effects of minocycline in the 6-hydroxydopamine rat model of Parkinson’s disease. Brain Res. 2006;1093(1):198-207. https://doi.org/10.1016/j.brainres.2006.03.104
  43. Klivenyi P, Gardian G, Calingasan NY, Yang L, Beal MF. Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J Mol Neurosci. 2003;21(3):191-198. https://doi.org/10.1385/JMN:21:3:191
  44. Castano A, Herrera AJ, Cano J, Machado A. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem. 1998;70:1584-1592. https://doi.org/10.1046/j.1471-4159.1998.70041584.x
  45. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem. 2002;81(6):1285-1297. https://doi.org/10.1046/j.1471-4159.2002.00928.x
  46. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 2009;137(1):47-59. https://doi.org/10.1016/j.cell.2009.01.038
  47. McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM. Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol. 2001;169(2):219-230. https://doi.org/10.1006/exnr.2001.7688
  48. Mount MP, Lira A, Grimes D, Smith PD, Faucher S, Slack R, Anisman H, Hayley S, Park DS. Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J Neurosci. 2007;27(12):3328-3337. https://doi.org/10.1523/JNEUROSCI.5321-06.2007
  49. Kempuraj D, Selvakumar GP, Zaheer S, Thangavel R, Ahmed ME, Raikwar S, Govindarajan R, Iyer S, Zaheer A. Cross-Talk between Glia, Neurons and Mast Cells in Neuroinflammation Associated with Parkinson’s Disease. J Neuroimmune Pharmacol. 2018;13(1):100-112. https://doi.org/10.1007/s11481-017-9766-1
  50. Kempuraj D, Thangavel R, Fattal R, Pattani S, Yang E, Zaheer S, Santillan DA, Santillan MK, Zaheer A. Mast Cells Release Chemokine CCL2 in Response to Parkinsonian Toxin 1-Methyl-4-Phenyl-Pyridinium (MPP(+)). Neurochem Res. 2016;41(5):1042-1049. https://doi.org/10.1007/s11064-015-1790-z
  51. Tansey MG, Goldberg MS. Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis. 2010;37(3):510-518. https://doi.org/10.1016/j.nbd.2009.11.004
  52. Pisani V, Stefani A, Pierantozzi M, Natoli S, Stanzione P, Franciotta D, Pisani A. Increased transfer of blood-cerebrospinal fluid albumin in advanced Parkinson’s disease. J Neuroinflammation. 2012;9:188. https://doi.org/10.1186/1742-2094-9-188
  53. Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol. 2005;57(2):176-179. https://doi.org/10.1002/ana.20369
  54. Farkas E, De Jong GI, de Vos RA, Jansen Steur EN, Luiten PG. Pathological features of cerebral cortical capillaries are doubled in Alzheimer’s disease and Parkinson’s disease. Acta Neuropathol. 2000;100(4):395-402. https://doi.org/10.1007/s004010000195
  55. Faucheux BA, Bonnet AM, Agid Y, Hirsch EC. Blood vessels change in the mesencephalon of patients with Parkinson’s disease. The Lancet. 1999;353(9157):981-982. https://doi.org/10.1016/S0140-6736(99)00641-8
  56. Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray- Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, Duyckaerts C, Flavell RA, Hirsch EC, Hunot S. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest. 2009;119:182-192. https://doi.org/10.1172/JCI36470
  57. Miklossy J, Doudet DD, Schwab C, Yu S, McGeer EG, McGeer PL. Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys. Exp Neurol. 2006;197(2):275-283. https://doi.org/10.1016/j.expneurol.2005.10.034
  58. Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood-brain barrier pathology in Alzheimer’s and Parkinson’s disease: implications for drug therapy. Cell Transplant. 2007;16(3):285-299. https://doi.org/10.3727/000000007783464731
  59. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38(8):1285-1291. https://doi.org/10.1212/WNL.38.8.1285
  60. Fiszer U, Mix E, Fredrikson S, Kostulas V, Link H. Parkinson’s disease and immunological abnormalities: increase of HLA-DR expression on monocytes in cerebrospinal fluid and of CD45RO+ T cells in peripheral blood. Acta Neurol Scand. 1994;90(3):160-166. https://doi.org/10.1111/j.1600-0404.1994.tb02699.x
  61. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol. 2003;106:518-526. https://doi.org/10.1007/s00401-003-0766-2
  62. Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, Kay DM, Doheny KF, Paschall J, Pugh E, Kusel VI, Collura R, Roberts J, Griffith A, Samii A, Scott WK, Nutt J, Factor SA, Payami H. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet. 2010;42(9):781-785. https://doi.org/10.1038/ng.642
  63. Puschmann A, Verbeeck C, Heckman MG, Soto-Ortolaza AI, Lynch T, Jasinska-Myga B, Opala G, Krygowska-Wajs A, Barcikowska M, Uitti RJ, Wszolek ZK, Ross OA. Human leukocyte antigen variation and Parkinson’s disease. Parkinsonism Relat Disord. 2011;17(5):376-378. https://doi.org/10.1016/j.parkreldis.2011.03.008
  64. Zhu RL, Lu XC, Tang LJ, Huang BS, Yu W, Li S, Li LX. Association between HLA rs3129882 polymorphism and Parkinson’s disease: a meta-analysis. Eur Rev Med Pharmacol Sci. 2015;19(3):423-32.
  65. Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11(11):775-787. https://doi.org/10.1038/nri3086
  66. Aloisi F. Immune function of microglia. Glia. 2001;36:165-179. https://doi.org/10.1002/glia.1106
  67. Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ. Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging. 2008;29(11):1690-1701. https://doi.org/10.1016/j.neurobiolaging.2007.04.006
  68. Wilms H, Rosenstiel P, Romero-Ramos M, Arlt A, Schfer H, Seegert D, Kahle PJ, Odoy S, Claasen JH, Holzknecht C, Brandenburg LO, Deuschl G, Schreiber S, Kirik D, Lucius R. Suppression of MAP kinases inhibits microglial activation and attenuates neuronal cell death induced by alpha-synuclein protofibrils. Int J Immunopathol Pharmacol. 2009;22(4):897-909. https://doi.org/10.1177/039463200902200405
  69. Lee EJ, Woo MS, Moon PG, Baek MC, Choi IY, Kim WK, Junn E, Kim HS. Alpha-synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. J Immunol. 2010;185(1):615-623. https://doi.org/10.4049/jimmunol.0903480
  70. Couch Y, Alvarez-Erviti L, Sibson NR, Wood MJ, Anthony DC. The acute inflammatory response to intranigral alpha-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. J Neuroinflammation. 2011;8:166. https://doi.org/10.1186/1742-2094-8-166
  71. Marin-Teva JL, Cuadros MA, Martin-Oliva D, Navascues J. Microglia and neuronal cell death. Neuron Glia Biol. 2011;7(1):25-40. https://doi.org/10.1017/S1740925X12000014
  72. Reynolds AD, Stone DK, Hutter JA, Benner EJ, Mosley RL, Gendelman HE. Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol. 2010;184(5):2261-2271. https://doi.org/10.4049/jimmunol.0901852
  73. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol. 1999;46:598-605. https://doi.org/10.1002/1531-8249(199910)46:4<598::AID-ANA7>3.0.CO;2-F
  74. Vazquez-Claverie M, Garrido-Gil P, San Sebastin W, Izal-Azcrate A, Belzunegui S, Marcilla I, Lypez B, Luquin MR. Acute and chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administrations elicit similar microglial activation in the substantia nigra of monkeys. J Neuropathol Exp Neurol. 2009;68(9):977-984. https://doi.org/10.1097/NEN.0b013e3181b35e41
  75. Croisier E, Moran LB, Dexter DT, Pearce RK, Graeber MB. Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflammation. 2005;2:14. https://doi.org/10.1186/1742-2094-2-14
  76. Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, Torizuka T. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol. 2005;57(2):168-175. https://doi.org/10.1002/ana.20338
  77. Harms AS, Cao S, Rowse AL, Thome AD, Li X, Mangieri LR, Cron RQ, Shacka JJ, Raman C, Standaert DG. MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci. 2013;33(23):9592-9600. https://doi.org/10.1523/JNEUROSCI.5610-12.2013
  78. Mogi M, Harada M, Kondo T, Riederer P, Nagatsu T. Brain beta 2-microglobulin levels are elevated in the striatum in Parkinson’s disease. J Neural Transm Park Dis Dement Sect. 1995;9(1):87-92. https://doi.org/10.1007/BF02252965
  79. Cebrian C, Zucca FA, Mauri P, Steinbeck JA, Studer L, Scherzer CR, Kanter E, Budhu S, Mandelbaum J, Vonsattel JP, Zecca L, Loike JD, Sulzer D. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun. 2014;5:3633. https://doi.org/10.1038/ncomms4633
  80. Lira A, Kulczycki J, Slack R, Anisman H, Park DS. Involvement of the Fc gamma receptor in a chronic N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of dopaminergic loss. J Biol Chem. 2011;286(33):28783-28793. https://doi.org/10.1074/jbc.M111.244830
  81. Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM, Tsiperson V, Nemachek C, Ciborowski P, Przedborski S, Mosley RL, Gendelman HE. Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One. 2008;3(1):e1376. https://doi.org/10.1371/journal.pone.0001376
  82. Reynolds AD, Banerjee R, Liu J, Gendelman HE, Mosley RL: Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J Leukoc Biol. 2007;82(5):1083-1094. https://doi.org/10.1189/jlb.0507296
  83. Huang Y, Liu Z, Wang XQ, Qiu YH, Peng YP. A dysfunction of CD4+ T lymphocytes in peripheral immune system of Parkinson’s disease model mice. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2014;30(6):567-576.
  84. Duffy SS, Keating BA, Perera CJ, Moalem-Taylor G. The role of regulatory T cells in nervous system pathologies. J Neurosci Res. 2018;96(6):951-968. https://doi.org/10.1002/jnr.24073
  85. Chi Y, Fan Y, He L, Liu W, Wen X, Zhou S, Hu G. Novel role of aquaporin-4 in CD4+CD25+ T regulatory cell development and severity of Parkinson’s disease. Aging Cell. 2011;10(3):368-382. https://doi.org/10.1111/j.1474-9726.2011.00677.x
  86. Chung, ES, Lee G, Lee C, Ye M, Chung HS, Kim H, Bae H. Bee venom phospholipase A2, a novel Foxp3+ regulatory T cell inducer, protects dopaminergic neurons by modulating neuroinflammatory responses in a mouse model of Parkinson’s disease. Journal of Immunology. 2015;195(10):4853-4860. https://doi.org/10.4049/jimmunol.1500386
  87. Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol. 2009;4(4):399-418. https://doi.org/10.1007/s11481-009-9164-4
  88. Bas J, Calopa M, Mestre M, Mollevi DG, Cutillas B, Ambrosio S, Buendia E. Lymphocyte populations in Parkinson’s disease and in rat models of parkinsonism. J Neuroimmunol. 2001;113:146-152. https://doi.org/10.1016/S0165-5728(00)00422-7
  89. Stevens CH, Rowe D, Morel-Kopp MC, Orr C, Russell T, Ranola M, Ward C, Halliday GM. Reduced T helper and B lymphocytes in Parkinson’s disease. J Neuroimmunol. 2012;252(1-2):95-99. https://doi.org/10.1016/j.jneuroim.2012.07.015
  90. Fiszer U, Mix E, Fredrikson S, Kostulas V, Link H. Parkinson’s disease and immunological abnormalities: increase of HLA-DR expression on monocytes in cerebrospinal fluid and of CD45RO+ T cells in peripheral blood. Acta Neurol Scand. 1994;90(3):160-166. https://doi.org/10.1111/j.1600-0404.1994.tb02699.x
  91. Crucian B, Dunne P, Friedman H, Ragsdale R, Pross S, Widen R. Alterations in levels of CD28-/CD8+ suppressor cell precursor and CD45RO+/CD4+ memory T lymphocytes in the peripheral blood of multiple sclerosis patients. Clin Diagn Lab Immunol. 1995;2(2):249-252.
  92. Hisanaga K, Asagi M, Itoyama Y, Iwasaki Y. Increase in peripheral CD4 bright+ CD8 dull+ T cells in Parkinson disease. Arch Neurol. 2001;58(10):1580-1583. https://doi.org/10.1001/archneur.58.10.1580
  93. Baba Y, Kuroiwa A, Uitti RJ, Wszolek ZK, Yamada T. Alterations of T-lymphocyte populations in Parkinson disease. Parkinsonism Relat Disord. 2005;11:493-498. https://doi.org/10.1016/j.parkreldis.2005.07.005
  94. Saunders JA, Estes KA, Kosloski LM, Allen HE, Dempsey KM, Torres-Russotto DR, Gendelman HE. CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. Journal of Neuroimmune Pharmacology. 2012;7(4):927-938. https://doi.org/10.1007/s11481-012-9402-z
  95. Rentzos M, Nikolaou C, Andreadou E, Paraskevas GP, Rombos A, Zoga M, Tsoutsou A, Boufidou F, Kapaki E, Vassilopoulos D. Circulating interleukin-15 and RANTES chemokine in Parkinson’s disease. Acta Neurol Scand. 2007;116(6):374-379. https://doi.org/10.1111/j.1600-0404.2007.00894.x
  96. Rentzos M, Nikolaou C, Andreadou E, Paraskevas GP, Rombos A, Zoga M, Tsoutsou A, Boufidou F, Kapaki E, Vassilopoulos D. Circulating interleukin-10 and interleukin-12 in Parkinson’s disease. Acta Neurol Scand. 2009;119(5):332-337. https://doi.org/10.1111/j.1600-0404.2008.01103.x
  97. Fiszer U, Mix E, Fredrikson S, Kostulas V, Olsson T, Link H. Gamma delta+ T cells are increased in patients with Parkinson’s disease. J Neurol Sci. 1994;121(1):39-45. https://doi.org/10.1016/0022-510X(94)90154-6
  98. Rosenkranz D, Weyer S, Tolosa E, Gaenslen A, Berg D, Leyhe T, Stoltze L. Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. Journal of Neuroimmunology. 2007;188(1-2):117-127. https://doi.org/10.1016/j.jneuroim.2007.05.011
  99. Chen Y, Qi B, Xu W, Ma B, Li L, Chen Q, Qu H. Clinical correlation of peripheral CD4+ cell subsets, their imbalance and Parkinson’s disease. Molecular Medicine Reports. 2015;12(4):6105-6111. https://doi.org/10.3892/mmr.2015.4136
  100. Fiszer U, Fredrikson S, Mix E, Olsson T, Link H. V region T cell receptor repertoire in Parkinson’s disease. Acta Neurol Scand. 1996;93(1):25-29. https://doi.org/10.1111/j.1600-0404.1996.tb00165.x
  101. Alberio T, Pippione AC, Zibetti M, Olgiati S, Cecconi D, Comi C, Lopiano L, Fasano M. Discovery and verification of panels of T-lymphocyte proteins as biomarkers of Parkinson’s disease. Sci Rep. 2012;2:953. https://doi.org/10.1038/srep00953
  102. Han M, Nagele E, DeMarshall C, Acharya N, Nagele R. Diagnosis of Parkinson’s disease based on disease-specific autoantibody profiles in human sera. PLoS One. 2012;7:e32383. https://doi.org/10.1371/journal.pone.0032383
  103. Double KL, Rowe DB, Carew-Jones FM, Hayes M, Chan DK, Blackie J, Corbett A, Joffe R, Fung VS, Morris J, Riederer P, Gerlach M, Halliday GM. Anti-melanin antibodies are increased in sera in Parkinson’s disease. Exp Neurol. 2009;217(2):297-301. https://doi.org/10.1016/j.expneurol.2009.03.002
  104. Fiszer U, Fredrikson S, Członkowska A. Humoral response to hsp 65 and hsp 70 in cerebrospinal fluid in Parkinson’s disease. J Neurol Sci. 1996;139(1):66-70. https://doi.org/10.1016/0022-510X(96)00002-0
  105. Terryberry JW, Thor G, Peter JB. Autoantibodies in neurodegenerative diseases: antigen-specific frequencies and intrathecal analysis. Neurobiol Aging. 1998;19(3):205-216. https://doi.org/10.1016/S0197-4580(98)00049-9
  106. Poletaev AB, Morozov SG, Gnedenko BB, Zlunikin VM, Korzhenevskey DA. Serum anti-S100b, anti-GFAP and anti-NGF autoantibodies of IgG class in healthy persons and patients with mental and neurological disorders. Autoimmunity. 2000;32(1):33-38. https://doi.org/10.3109/08916930008995985
  107. Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM. A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain. 2005;128(11):2665-2674. https://doi.org/10.1093/brain/awh625
  108. Depboylu C, Schäfer MK, Arias-Carrión O, Oertel WH, Weihe E, Höglinger GU. Possible involvement of complement factor C1q in the clearance of extracellular neuromelanin from the substantia nigra in Parkinson disease. J Neuropathol Exp Neurol. 2011;70(2):125-132. https://doi.org/10.1097/NEN.0b013e31820805b9
  109. He Y, Le WD, Appel SH. Role of Fcgamma Receptors in Nigral Cell Injury Induced by Parkinson Disease Immunoglobulin Injection into Mouse Substantia Nigra. Experimental Neurology. 2002;176(2):322-327. https://doi.org/10.1006/exnr.2002.7946
  110. Cao S, Theodore S, Standaert DG. Fc] receptors are required for NF-B signaling, microglial activation and dopaminergic neurodegeneration in an AAV-synuclein mouse model of Parkinson’s disease. Mol Neurodegener. 2010;5:42. https://doi.org/10.1186/1750-1326-5-42
  111. Bae EJ, Lee HJ, Rockenstein E, Ho DH, Park EB, Yang NY, Desplats P, Masliah E, Lee SJ. Antibody-aided clearance of extracellular alpha-synuclein prevents cell-to-cell aggregate transmission. J Neurosci. 2012;32(39):13454-13469. https://doi.org/10.1523/JNEUROSCI.1292-12.2012
  112. Papachroni KK, Ninkina N, Papapanagiotou A, Hadjigeorgiou GM, Xiromerisiou G, Papadimitriou A, Kalofoutis A, Buchman VL. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J Neurochem. 2007;101(3):749-756. https://doi.org/10.1111/j.1471-4159.2006.04365.x
  113. Li X, Sundquist J, Sundquist K. Subsequent risks of Parkinson disease in patients with autoimmune and related disorders: a nationwide epidemiological study from Sweden. Neurodgener Dis. 2012;10:277-284. https://doi.org/10.1159/000333222
  114. Walker RH, Spiera H, Brin MF, Olanow CW. Parkinsonism associated with Sjögren’s syndrome: three cases and a review of the literature. Mov Disord. 1999;14(2):262-268. https://doi.org/10.1002/1531-8257(199903)14:2<262::AID-MDS1011>3.0.CO;2-6
  115. Langan SM, Groves RW, West J. The relationship between neurological disease and bullous pemphigoid: a population-based case-control study. J Invest Dermatol. 2011;131(3):631-636. https://doi.org/10.1038/jid.2010.357
  116. Ravenholt RT, Foege WH. 1918 influenza, encephalitis lethargica, parkinsonism. Lancet. 1982;2(8303):860-864. https://doi.org/10.1016/S0140-6736(82)90820-0
  117. Miman O, Kusbeci OY, Aktepe OC, Cetinkaya Z. The probable relation between Toxoplasma gondii and Parkinson’s disease. Neurosci Lett. 2010;475(3):129-131. https://doi.org/10.1016/j.neulet.2010.03.057
  118. Woulfe J, Hoogendoorn H, Tarnopolsky M, Mucoz DG. Monoclonal antibodies against Epstein-Barr virus cross-react with alpha-synuclein in human brain. Neurology. 2000;55(9):1398-1401. https://doi.org/10.1212/WNL.55.9.1398

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.