The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Iurov I.Iu.

Nauchnyĭ tsentr psikhicheskogo zdorov'ia RAMN, Moskva;
Moskovskiĭ NII pediatrii i detskoĭ khirurgii Minzdrava RF, Moskva;
Moskovskiĭ gorodskoĭ psikhologo-pedagogicheskiĭ universitet, Moskva

Vorsanova S.G.

Nauchnyĭ tsentr psikhicheskogo zdorov'ia RAMN, Moskva;
Moskovskiĭ NII pediatrii i detskoĭ khirurgii Minzdrava RF, Moskva;
Moskovskiĭ gorodskoĭ psikhologo-pedagogicheskiĭ universitet, Moskva

Zelenova M.A.

FGBU "Nauchnyĭ tsentr psikhicheskogo zdorov'ia RAMN", Moskva;
FGBU "Moskovskiĭ NII pediatrii i detskoĭ khirurgii Minzdrava Rossii", Moskva;
Moskovskiĭ gorodskoĭ psikhologo-pedagogicheskiĭ universitet, Moskva

Vasin K.S.

Mental Health Research Center, Moscow, Russia;
Veltishev Research and Clinical Institute for Pediatrics at the Pirogov Russian National Research Medical University, Moscow, Russia;
Moscow State University of Psychology and Education, Moscow, Russia

Kurinnaia O.S.

Nauchnyĭ tsentr psikhicheskogo zdorov'ia RAMN, Moskva;
Moskovskiĭ NII pediatrii i detskoĭ khirurgii Minzdrava RF, Moskva;
Moskovskiĭ gorodskoĭ psikhologo-pedagogicheskiĭ universitet, Moskva

Korostelev S.A.

Research Centre for Medical Genetics, Moscow, Russia

Iurov Iu.B.

Nauchnyĭ tsentr psikhicheskogo zdorov'ia RAMN, Moskva;
Moskovskiĭ NII pediatrii i detskoĭ khirurgii Minzdrava RF, Moskva;
Moskovskiĭ gorodskoĭ psikhologo-pedagogicheskiĭ universitet, Moskva

Epigenomic variations manifesting as a loss of heterozygosity affecting imprinted genes represent a molecular mechanism of autism spectrum disorders and intellectual disability in children

Authors:

Iurov I.Iu., Vorsanova S.G., Zelenova M.A., Vasin K.S., Kurinnaia O.S., Korostelev S.A., Iurov Iu.B.

More about the authors

Read: 1526 times


To cite this article:

Iurov IIu, Vorsanova SG, Zelenova MA, Vasin KS, Kurinnaia OS, Korostelev SA, Iurov IuB. Epigenomic variations manifesting as a loss of heterozygosity affecting imprinted genes represent a molecular mechanism of autism spectrum disorders and intellectual disability in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(5):91‑97. (In Russ.)
https://doi.org/10.17116/jnevro201911905191

Recommended articles:
Personality profile caused by epilepsy acco­rding to the «Big Five» model. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(10):16-21
Ototoxicity caused by anti-epileptic drugs. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):14-19
Abse­nce status epilepticus in adults. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):47-56
Pera­mpanel treatment in IQSEC2-associated epileptic ence­phalopathy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(2):143-149

References:

  1. Tiganov AS, Yurov YB, Vorsanova SG, Iourov IY. Nestabil’nost’ genoma golovnogo mozga: jetiologija, patogenez i novye biologicheskie markery psihicheskih boleznej. Vestnik Rossijskoj Akademii Medicinskih Nauk. 2012;9:45-53. (In Russ.) https://doi.org/10.15690/vramn.v67i9.406
  2. Vorsanova SG, Yurov YuB, Silvanovich AP, Demidova IA, Iourov IYu. Current concepts in molecular genetics and genomics of autism. Fundamental’nye Issledovanija. 2013;4(2):356-367. (In Russ.). https://www.fundamental-research.ru/en/article/view?id=31197
  3. Yurov YuB, Vorsanova SG, Iourov IY. Molekulyarnaya citogenetika i genomika autizma. Molekulyarnaya Medicina. 2014;2:3-7. (In Russ.)
  4. Iourov IY, Vorsanova SG, Korostelev SA, Vasin KS, Zelenova MA, Kurinnaia OS, Yurov YuB. Structural variations of the genome in autistic spectrum disorders with intellectual disability. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2016;116(7):50-54. (In Russ.) https://doi.org/10.17116/jnevro20161167150-54
  5. Srivastava AK, Schwartz CE. Intellectual disability and autism spectrum disorders: causal genes and molecular mechanisms. Neuroscience & Biobehavioral Reviews. 2014;46(2):161-174.
  6. Waye MMY, Cheng HY. Genetics and epigenetics of autism: A Review. Psychiatry and Clinical Neurosciences. 2017;72(4):228-244. https://doi.org/10.1111/pcn.12606
  7. Iourov IY, Vorsanova SG, Kurinnaya OS, Kolotij AD, Demidova IA, Kravec VS, Yurov YuB. Sindromy Pradera—Villi i Angel’mana: vozmozhnosti molekulyarno-citogeneticheskoj i citogeneticheskoj diagnostiki. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2014;114:1:49-53. (In Russ.)
  8. Rangasamy S, D’Mello SR, Narayanan V. Epigenetics, autism spectrum, and neurodevelopmental disorders. Neurotherapeutics. 2013;10(4):742-756. https://doi.org/10.1007/s13311-013-0227-0
  9. Woodbury-Smith M, Scherer SW. Progress in the genetics of autism spectrum disorder. Developmental Medicine & Child Neurology. 2018;60(5):445-451. https://doi.org/10.1111/dmcn.13717
  10. Iourov IY, Vorsanova SG, Yurov YB. Somatic cell genomics of brain disorders: a new opportunity to clarify genetic-environmental interactions. Cytogenetic and Genome Research. 2013;139:3:181-188.
  11. Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: windows into population history and trait architecture. Nature Reviews Genetics. 2018;19(4):220-234. https://doi.org/10.1038/nrg.2017.109
  12. Iourov IY, Vorsanova SG, Korostelev SA, Zelenova MA, Yurov YB. Long contiguous stretches of homozygosity spanning shortly the imprinted loci are associated with intellectual disability, autism and/or epilepsy. Molecular Cytogenetics. 2015;8:77. https://doi.org/10.1186/s13039-015-0182-z
  13. Reiner J, Karger L, Cohen N, Mehta L, Edelmann L, Scott SA. Chromosomal microarray detection of constitutional copy number variation using saliva DNA. J Mol Diagn. 2017;19(3):397-403. https://doi.org/10.1016/j.jmoldx.2016.11.006
  14. Grote L, Myers M, Lovell A, Saal H, Lipscomb SK. Variability in laboratory reporting practices for regions of homozygosity indicating parental relatedness as identified by SNP microarray testing. Genet Med. 2012;14(12):971-976.
  15. Iourov IY, Vorsanova SG, Yurov YB. Runs of homozygosity and epigenetic deregulation of genomic imprinting. OBM Genetics. 2018;2(3):028. https://doi.org/10.21926/obm.genet.1803028
  16. Iwase S, Bérubé NG, Zhou Z, Kasri NN, Battaglioli E, Scandaglia M, Barco A. Epigenetic etiology of intellectual disability. Journal of Neuroscience. 2017;37(45):10773-10782. https://doi.org/10.1523/JNEUROSCI.1840-17.2017
  17. Gamsiz ED, Viscidi EW, Frederick AM, Nagpal S, Sanders SJ, Murtha MT, Schmidt M, Simons Simplex Collection Genetics Consortium, Triche EW, Geschwind DH, State MW, Istrail S, Cook EH Jr., Devlin B, Morrow EM. Intellectual disability is associated with increased runs of homozygosity in simplex autism. American Journal of Human Genetics. 2013;93(1):103-109. https://doi.org/10.1016/j.ajhg.2013.06.004
  18. Lin PI, Kuo PH, Chen CH, Wu JY, Gau SS, Wu YY, Liu SK. Runs of homozygosity associated with speech delay in autism in a Taiwanese han population: evidence for the recessive model. PLoS One. 2013;8(8):e72056. https://doi.org/10.1371/journal.pone.0072056
  19. Gandin I, Faletra F, Faletra F, Carella M, Pecile V, Ferrero GB, Biamino E, Palumbo P, Palumbo O, Bosco P, Romano C, Belcaro C, Vozzi D, d’Adamo AP. Excess of runs of homozygosity is associated with severe cognitive impairment in intellectual disability. Genetics in Medicine. 2015;17(5):396-399. https://doi.org/10.1038/gim.2014.118
  20. Horsthemke B. Mechanisms of imprint dysregulation. Am J Med Genet C: Semin Med Genet. 2010;154C(3):321-328.
  21. Soellner L, Begemann M, Mackay DJ, Grønskov K, Tümer Z, Maher ER, Temple IK, Monk D, Riccio A, Linglart A, Netchine I, Eggermann T. Recent advances in imprinting disorders. Clinical Genetics. 2017;91(1):3-13. https://doi.org/10.1111/cge.12827.
  22. Vorsanova SG, Iourov IY, Kurinnaia OS, Voinova VYu Yurov YuB. Genomic abnormalities in children with mental retardation and autism: the use of comparative genomic hybridization in situ (HRCGH) and molecular karyotyping with DNA-microchips (array CGH). Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2013;113(8):46-49. (In Russ.). https://www.mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2013/8/031997-7298201388/annotation
  23. Iourov IY, Vorsanova SG, Zelenova MA, Vasin KS, Yurov YuB. Bioinformatic technology accessing functional concequences of genomic variations. Fundamental’nye Issledovanija. 2015;2(19):4209-4214. (In Russ.). https://www.fundamental-research.ru/ru/article/view?id=37931
  24. Iourov IY, Vorsanova SG, Yurov YB. In silico molecular cytogenetics: a bioinformatic approach to prioritization of candidate genes and copy number variations for basic and clinical genome research. Molecular Cytogenetics. 2014;7(1):98. https://doi.org/10.1186/s13039-014-0098-z
  25. Alabdullatif MA, Al Dhaibani MA, Khassawneh MY, El-Hattab AW. Chromosomal microarray in a highly consanguineous population: diagnostic yield, utility of regions of homozygosity, and novel mutations. Clin Genet. 2017;91(4):616-622. https://doi.org/10.1111/cge.12872.
  26. McCann JA, Zheng H, Islam A, Goodyer CG, Polychronakos C. Evidence against GRB10 as the gene responsible for Silver-Russell syndrome. Biochem Biophys Res Commun. 2001;286(5):943-948.
  27. Begemann M, Spengler S, Gogiel M, Grasshoff U, Bonin M, Betz RC, Dufke A, Spier I, Eggermann T. Clinical significance of copy number variations in the 11p15.5 imprinting control regions: new cases and review of the literature. Journal of Medical Genetics. 2012;49(9):547-553.
  28. Yurov YB, Vorsanova SG, Iourov IY. Ontogenetic variation of the human genome. Current Genomics. 2010;11:6:420-425.
  29. Satterlee JS, Beckel-Mitchener A, Little R, Procaccini D, Rutter JL, Lossie AC. Neuroepigenomics: resources, obstacles, and opportunities. Neuroepigenetics. 2015;1:2-13.
  30. Vorsanova SG, Yurov YB, Iourov IY. Neurogenomic pathway of autism spectrum disorders: linking germline and somatic mutations to genetic-environmental interactions. Current Bioinformatics. 2017;12(1):19-26. https://doi.org/10.2174/1574893611666160606164849
  31. Iourov IY, Vorsanova SG, Yurov YB. Modern progress in the molecular cytogenetic diagnosis of hereditary diseases. Klinicheskaja Laboratornaja Diagnostika. 2005;11:21-29. (In Russ.). https://elibrary.ru/item.asp?id=17042057
  32. Kalsner L, Chamberlain SJ. Prader-Willi, Angelman, and 15q11-q13 Duplication Syndromes. Pediatr Clin North Am. 2015;62(3):587-606.
  33. Schang AL, Sabéran-Djoneidi D, Mezger V. The impact of epigenomic next-generation sequencing approaches on our understanding of neuropsychiatric disorders. Clinical Genetics. 2018;93(3):467-480. https://doi.org/10.1111/cge.13097
  34. Margolis SS, Sell GL, Zbinden MA, Bird LM. Angelman Syndrome. Neurotherapeutics. 2015;12(3):641-650.
  35. Johnson EC, Evans LM, Keller MC. Relationships between estimated autozygosity and complex traits in the UK Biobank. PLoS Genet. 2018;14(7): e1007556. https://doi.org/10.1371/journal.pgen.1007556
  36. Wang JC, Ross L, Mahon LW, Owen R, Hemmat M, Wang BT, El Naggar M, Kopita KA, Randolph LM, Chase JM, Matas Aguilera MJ, Siles JL, Church JA, Hauser N, Shen JJ, Jones MC, Wierenga KJ, Jiang Z, Haddadin M, Boyar FZ, Anguiano A, Strom CM, Sahoo T. Regions of homozygosity identified by oligonucleotide SNP arrays: evaluating the incidence and clinical utility. Eur J Hum Genet. 2015;23(5):663-671. https://doi.org/10.1038/ejhg.2014.153
  37. Alshahrani M, Hoehndorf R. Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization without phenotypes. Bioinformatics. 2018;34(17):901-907. https://doi.org/10.1093/bioinformatics/bty559

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.