The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Lopatina A.V.

Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency

Kukushkina A.D.

Federal Center of Brain and Neurotechnologies

Melnikov M.V.

Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency;
Pirogov Russian National Research Medical University;
National Research Center Institute of Immunology of the Federal Medical Biological Agency

Rogovskii V.S.

Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency;
Pirogov Russian National Research Medical University

Prospects for the use of polyphenols in multiple sclerosis

Authors:

Lopatina A.V., Kukushkina A.D., Melnikov M.V., Rogovskii V.S.

More about the authors

Read: 3648 times


To cite this article:

Lopatina AV, Kukushkina AD, Melnikov MV, Rogovskii VS. Prospects for the use of polyphenols in multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(7‑2):36‑43. (In Russ.)
https://doi.org/10.17116/jnevro202212207236

Recommended articles:
The role of immuno-inflammatory factors in the deve­lopment of nega­tive symptoms in schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):42-48
Surgical treatment of seco­ndary trigeminal neuralgia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):203-209
Quality of life of patients with multiple scle­rosis in the Smolensk region. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):36-40
Hormonal contraception methods and multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):24-30
Epidemiology of multiple scle­rosis in the city of Novo­sibirsk. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):119-127
Diffuse changes in the brain in the acute phase of COVID-19 and after infe­ction. Russian Journal of Archive of Pathology. 2025;(1):5-15
A clinical case of X-linked adre­noleukodystrophy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4):102-107

References:

  1. Gusev EI, Boiko AN. Multiple Sclerosis. M.: Zdorovie cheloveka; 2020;1:600. (In Russ.).
  2. Atlas of MS 2020 — Epidemiology report. MSIF, 2020.
  3. van der Mei I, Lucas RM, Taylor BV, et al. Population attributable fractions and joint effects of key risk factors for multiple sclerosis. Mult Scler. 2016;22(4):461-469.  https://doi.org/10.1177/1352458515594040
  4. Alharbi FM. Update in vitamin D and multiple sclerosis. Neurosciences (Riyadh). 2015;20(4):329-235.  https://doi.org/10.17712/nsj.2015.4.20150357
  5. Sundstrom P, Salzer J. Vitamin D and multiple sclerosis-from epidemiology to prevention. Acta Neurol Scand. 2015;132(199):56-61.  https://doi.org/10.1111/ane.12432
  6. Ascherio A, Munger K. EBV and Autoimmunity. Curr Top Microbiol Immunol. 2015;390(Pt 1):365-285.  https://doi.org/10.1007/978-3-319-22822-8_15
  7. Belbasis L, Bellou V, Evangelou E, et al. Environmental risk factors and multiple sclerosis: review of systematic reviews and meta-analyses. Lancet Neurol. 2015;14(3):263-273.  https://doi.org/10.1016/S1474-4422(14)70267-4
  8. Cantarel B, Waubant E, Chehoud C, et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med. 2015;63(5):729-734.  https://doi.org/10.1097/JIM.0000000000000192
  9. Jangi S, Gandhi R, Cox L, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016;7:12015. https://doi.org/10.1038/ncomms12015
  10. Miyake S, Kim S, Suda W, et al. Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS One. 2015;10(9):e0137429. https://doi.org/10.1371/journal.pone.0137429
  11. Chen J, Chia N, Kalari K, et al. Mangalam, Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep. 2016;6:28484. https://doi.org/10.1038/srep28484
  12. Abdurasulova IN, Tarasova EA, Kudryavtsev IV, et al. Intestinal microbiota composition and peripheral blood Th cell subsets in patients with multiple sclerosis. Infection and Immunity. 2019;9(3-4):504-522. (In Russ.). https://doi.org/10.15789/2220-7619-2019-3-4-504-522
  13. Probstel A. Baranzini S. The Role of the Gut Microbiome in Multiple Sclerosis Risk and Progression: Towards Characterization of the «MS Microbiome». Neurotherapeutics. 2018;15(1):126-134.  https://doi.org/10.1007/s13311-017-0587-y
  14. Tangestani H, Boroujeni H, Djafarian K, et al. Vitamin D and The Gut Microbiota: a Narrative Literature Review. Clin Nutr Res. 2021;10(3):181-191.  https://doi.org/10.7762/cnr.2021.10.3.181
  15. Boziki M, Kesidou E, Theotokis P, et al. Microbiome in Multiple Sclerosis; Where Are We, What We Know and Do Not Know. Brain Sci. 2020;10(4):12-19.  https://doi.org/10.3390/brainsci10040234
  16. Gerdes L, Yoon H, Peters A. Microbiota and multiple sclerosis. Nervenarzt. 2020;91(12):1096-1107. https://doi.org/10.1007/s00115-020-01012-w
  17. Kamali AN, Noorbakhsh SM, Hamedifar H, et al. Role for Th1‐like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders. Mol Immunol. 2019;105:107-115.  https://doi.org/10.1016/j.molimm.2018.11.015
  18. Adler LN, Jiang W, Bhamidipati K, et al. The Other Function: Class II-Restricted Antigen Presentation by B Cells. Front Immunol. 2017;8:319.  https://doi.org/10.3389/fimmu.2017.00319
  19. Ziemssen T, Akgun K, Bruck W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation. 2019;16(1):272.  https://doi.org/10.1186/s12974-019-1674-2
  20. Hausser-Kinzel S, Weber M. The Role of B Cells and Antibodies in Multiple Sclerosis, Neuromyelitis Optica, and Related Disorders. Front Immunol. 2019;10:201-209.  https://doi.org/10.3389/fimmu.2019.00201
  21. Xu X, Chi S, Wang Q, et al. Efficacy and safety of monoclonal antibody therapies for relapsing remitting multiple sclerosis: A network meta-analysis. Mult Scler Relat Disord. 2018;25:322-328.  https://doi.org/10.1016/j.msard.2018.08.026
  22. Soleimani B, Murray K, Hunt D. Established and Emerging Immunological Complications of Biological Therapeutics in Multiple Sclerosis. Drug Saf. 2019;42(8):941-956.  https://doi.org/10.1007/s40264-019-00799-1
  23. Rogovskii VS, Popov SV, Sturov NV, Shimanovskii NL. The Possibility of Preventive and Therapeutic Use of Green Tea Catechins in Prostate Cancer. Anticancer Agents Med Chem. 2019;23:12-19.  https://doi.org/10.2174/1871520619666190404153058
  24. Skrovankova S, Sumczynski D, Mlcek J, et al. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int J Mol Sci. 2015;16(10):24673-24706. https://doi.org/10.3390/ijms161024673
  25. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2(12):1231-1246. https://doi.org/10.3390/nu2121231
  26. Fonseca-Kelly Z, Nassrallah M, Uribe J, et al. Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis. Front Neurol. 2012;3:84-88.  https://doi.org/10.1007/978-1-4614-6968-1_2
  27. Terauchi M, Horiguchi N, Kajiyama A, et al. Effects of grape seed proanthocyanidin extract on menopausal symptoms, body composition, and cardiovascular parameters in middle-aged women: a randomized, double-blind, placebo-controlled pilot study. Menopause. 2014;21(9):990-996.  https://doi.org/10.1097/GME.0000000000000200
  28. Khan H, Sureda A, Belwal T, et al. Polyphenols in the treatment of autoimmune diseases. Autoimmun Rev. 2019;18(7):647-657.  https://doi.org/10.1016/j.autrev.2019.05.001
  29. Rogovskii VS, Shimanovskii NL, Matyushin AI. Antihypertensive and neuroprotective activity of quercetin and its derivatives. Eksp Klin Farmakol. 2012;75(9):37-41. (In Russ.).
  30. Ghasemi N, Razavi S, Nikzad E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2017;19(1):1-10.  https://doi.org/10.22074/cellj.2016.4867
  31. Rogovskii VS. Immune tolerance as the physiologic counterpart of chronic inflammation. Front Immunol. 2020;11:2061. https://doi.org/10.3389/fimmu.2020.02061
  32. Jin M, Park SY, Shen Q, et al. Anti-neuroinflammatory effect of curcumin on Pam3CSK4-stimulated microglial cells. Int J Mol Med. 2018;41(1):521-530.  https://doi.org/10.3892/ijmm.2017.3217
  33. Espin J, Larrosa M, Garcia-Conesa M, et al. Biological significance of urolithins, the gut microbial ellagic Acid-derived metabolites: the evidence so far. Evid Based Complement Alternat Med. 2013;2013:270418. https://doi.org/10.1155/2013/270418
  34. Xu J, Yuan C, Wang G, et al. Urolithins Attenuate LPS-Induced Neuroinflammation in BV2Microglia via MAPK, Akt, and NF-kappaB Signaling Pathways. J Agric Food Chem. 2018;66(3):571-580.  https://doi.org/10.1021/acs.jafc.7b03285
  35. Cannon AS, Nagarkatti P, Nagarkatti M. Targeting AhR as a Novel Therapeutic Modality against Inflammatory Diseases. Int J Mol Sci. 2021;23(1):12-19.  https://doi.org/10.3390/ijms23010288
  36. Muku G, Murray I, Espin J, et al. Urolithin A Is a Dietary Microbiota-Derived Human Aryl Hydrocarbon Receptor Antagonist. Metabolites. 2018;8(4):12-19.  https://doi.org/10.3390/metabo8040086
  37. Goya-Jorge E, Jorge Rodriguez M, Veitia M, et al. Plant Occurring Flavonoids as Modulators of the Aryl Hydrocarbon Receptor. Molecules. 2021;26(8):12-20.  https://doi.org/10.3390/molecules26082315
  38. Correa T, Rogero M, Hassimotto N, et al. The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Metabolic Diseases. Front Nutr. 2019;6:188.  https://doi.org/10.3389/fnut.2019.00188
  39. Khadka S, Omura S, Sato F, et al. Curcumin beta-D-Glucuronide Modulates an Autoimmune Model of Multiple Sclerosis with Altered Gut Microbiota in the Ileum and Feces. Front Cell Infect Microbiol. 2021;11:772962. https://doi.org/10.3389/fcimb.2021.772962
  40. Robinson AP, Harp CT, Noronha A, et al. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol. 2014;122:173-89.  https://doi.org/10.1016/B978-0-444-52001-2.00008-X
  41. Mohajeri M, Sadeghizadeh M, Najafi F, et al. Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology. 2015;99:156-167.  https://doi.org/10.1016/j.neuropharm.2015.07.013
  42. Giacometti J, Grubic-Kezele T. Olive Leaf Polyphenols Attenuate the Clinical Course of Experimental Autoimmune Encephalomyelitis and Provide Neuroprotection by Reducing Oxidative Stress, Regulating Microglia and SIRT1, and Preserving Myelin Integrity. Oxid Med Cell Longev. 2020;2020:6125638. https://doi.org/10.1155/2020/6125638
  43. Shen P, Li X, Deng S, et al. Urolithin A ameliorates experimental autoimmune encephalomyelitis by targeting aryl hydrocarbon receptor. EBioMedicine. 2021;64:103227. https://doi.org/10.1016/j.ebiom.2021.103227
  44. Yavarpour-Bali A, Ghasemi-Kasman H, Pirzadeh M. Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. Int J Nanomed. 2019;14:4449-4460. https://doi.org/10.2147/IJN.S208332
  45. Mycko M, Baranzini S. microRNA and exosome profiling in multiple sclerosis. Mult Scler. 2020;26(5):599-604.  https://doi.org/10.1177/1352458519879303
  46. Dolati S, Ahmadi M, Aghebti-Maleki L, et al. Nanocurcumin is a potential novel therapy for multiple sclerosis by influencing inflammatory mediators. Pharmacol Rep. 2018;70(6):1158-1167. https://doi.org/10.1016/j.pharep.2018.05.008
  47. Dolati S, Aghebati-Maleki L, Ahmadi M, et al. Nanocurcumin restores aberrant miRNA expression profile in multiple sclerosis, randomized, double-blind, placebo-controlled trial. J Cell Physiol. 2018;233(7):5222-5230. https://doi.org/10.1002/jcp.26301
  48. Moser T, Akgun K, Proschmann U, et al. The role of TH17 cells in multiple sclerosis: Therapeutic implications. Autoimmun Rev. 2020;19(10):102647. https://doi.org/10.1016/j.autrev.2020.102647
  49. Dolati S, Ahmadi M, Rikhtegar R, et al. Changes in Th17 cells function after nanocurcumin use to treat multiple sclerosis. Int Immunopharmacol. 2018;61:74-81.  https://doi.org/10.1016/j.intimp.2018.05.018
  50. Kong Q, Zeng Q, Yu J, et al. Mechanism of Resveratrol Dimers Isolated from Grape Inhibiting 1O 2 Induced DNA Damage by UHPLC-QTOF-MS 2 and UHPLC-QQQ-MS 2 Analyses. Biomedicines. 2021;12(2):12-19.  https://doi.org/10.3390/biomedicines9030271
  51. Siahpoosh A, Majdinasab N, Derakhshannezhad N, et al. Effect of grape seed on quality of life in multiple sclerosis patients. J Contempor Medi Sci. 2018;4(3):12-17. 
  52. de la Rubia Ortí J, Platero JL, Benlloch M, et al. Role of Haptoglobin as a Marker of Muscular Improvement in Patients with Multiple Sclerosis after Administration of Epigallocatechin Gallate and Increase of Beta-Hydroxybutyrate in the Blood: A Pilot Study. Biomolecules. 2021;11(5):617-621.  https://doi.org/10.3390/biom11050617
  53. Coe S, Cossington J, Collett J, et al. A randomised double-blind placebo-controlled feasibility trial of flavonoid-rich cocoa for fatigue in people with relapsing and remitting multiple sclerosis. J Neurol Neurosurg Psychiatry. 2019;90(5):507-513.  https://doi.org/10.1136/jnnp-2018-319496
  54. Mahler A, Steiniger J, Bock M, et al. Metabolic response to epigallocatechin-3-gallate in relapsing-remitting multiple sclerosis: a randomized clinical trial. Am J Clin Nutr. 2015;101(3):487-495.  https://doi.org/10.3945/ajcn.113.075309
  55. Rogovskii V. Polyphenols as the Potential Disease-modifying Therapy in Cancer. Anticancer Agents Med Chem. 2022;12(3):23-29.  https://doi.org/10.2174/1871520622666220201105204

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.