The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Krivenko L.V.

Federal Center of Brain research and Neurotechnologies of the Federal Medical Biological Agency of Russia

Sviridova A.A.

Federal Center of Brain research and Neurotechnologies of the Federal Medical Biological Agency of Russia

Melnikov M.V.

Pirogov Russian National Research Medical University;
Federal Center of Brain Research and Neurotechnologies of FMBA;
Institute of Immunology of FMBA

Rogovskii V.S.

Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency;
Pirogov Russian National Research Medical University

Boyko A.N.

Pirogov Russian National Research Medical University;
Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency

Pashenkov M.V.

National Research Center Institute of Immunology of the Federal Medical Biological Agency of Russia

The influence of fluoxetine on interleukin-6 and interleukin-1β production by dendritic cells in multiple sclerosis in vitro

Authors:

Krivenko L.V., Sviridova A.A., Melnikov M.V., Rogovskii V.S., Boyko A.N., Pashenkov M.V.

More about the authors

Read: 2069 times


To cite this article:

Krivenko LV, Sviridova AA, Melnikov MV, Rogovskii VS, Boyko AN, Pashenkov MV. The influence of fluoxetine on interleukin-6 and interleukin-1β production by dendritic cells in multiple sclerosis in vitro. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(7‑2):67‑72. (In Russ.)
https://doi.org/10.17116/jnevro202012007267

Recommended articles:
Cognitive impairment in patients with multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4-2):67-73
Surgical treatment of seco­ndary trigeminal neuralgia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):203-209
Quality of life of patients with multiple scle­rosis in the Smolensk region. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):36-40
Hormonal contraception methods and multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):24-30
Epidemiology of multiple scle­rosis in the city of Novo­sibirsk. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):119-127
A clinical case of X-linked adre­noleukodystrophy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4):102-107

References:

  1. Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 2015;14(4):406-419.  https://doi.org/10.1016/S1474-4422(14)70305-9
  2. Melnikov MV, Pashenkov MV, Boyko AN. Dendritic cells in multiple sclerosis. Journal of Neurology and Psychiatry. S.S. Korsakov. 2017;117(2):22-30. (In Russ.).
  3. Sie C, Korn T. Dendritic cells in central nervous system autoimmunity. Semin Immunopathol. 2017;39(2):99-111.  https://doi.org/10.1007/s00281-016-0608-7
  4. Melnikov M, Rogovskii V, Boyko A, Pashenkov M. The influence of biogenic amines on Th17-mediated immune response in multiple sclerosis. Mult Scler Relat Disord. 2018;12:21:19-23.  https://doi.org/10.1016/j.msard.2018.02.012
  5. Boyko A, Melnikov M, Ghetishev R, Pashenkov M. The role of biogenic amines in regulation of interaction between immune and nervous systems in multiple sclerosis. Neuroimmunomodulation. 2016;23(4):217-223.  https://doi.org/10.1159/000449167
  6. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292-302.  https://doi.org/10.1002/ana.22366
  7. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444-1452. https://doi.org/10.1212/wnl.33.11.1444
  8. Sallusto F., Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179(4):1109-1118.
  9. Han TH, Jin P, Ren J, Slezak S, Marincola FM, Stroncek DF. Evaluation of 3 clinical dendritic cell maturation protocols containing lipopolysaccharide and interferon-gamma. J Immunother. 2009;32(4):399-407.  https://doi.org/10.1097/CJI.0b013e31819e1773
  10. Branco-de-Almeida LS, Kajiya M, Cardoso CR, Silva MJ, Ohta K, Rosalen PL, Franco GC, Han X, Taubman MA, Kawai T. Selective serotonin reuptake inhibitors attenuate the antigen presentation from dendritic cells to effector T lymphocytes. FEMS Immunol Med Microbiol. 2011;62(3):283-294.  https://doi.org/10.1111/j.1574-695X.2011.00816.x
  11. Pashenkov M, Huang YM, Kostulas V, Haglund M, Söderström M, Link H. Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain. 2001;124(Pt 3):480-492. 
  12. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337-341.  https://doi.org/10.1038/nature14432
  13. De Laere M, Berneman ZN. Cools N. To the Brain and Back: Migratory Paths of Dendritic Cells in Multiple Sclerosis. J Neuropathol Exp Neurol. 2018;77(3):178-192.  https://doi.org/10.1093/jnen/nlx114
  14. Prado C, Gaiazzi M, González H, Ugalde V, Figueroa A, Osorio-Barrios FJ, López E, Lladser A, Rasini E, Marino F, Zaffaroni M, Cosentino M, Pacheco R. Dopaminergic Stimulation of Myeloid Antigen-Presenting Cells Attenuates Signal Transducer and Activator of Transcription 3-Activation Favouring the Development of Experimental Autoimmune Encephalomyelitis. Front Immunol. 2018;9:571.  https://doi.org/10.3389/fimmu.2018.00571
  15. Takenaka MC, Araujo LP, Maricato JT, Nascimento VM, Guereschi MG, Rezende RM, Quintana FJ, Basso AS. Norepinephrine Controls Effector T Cell Differentiation through β2-Adrenergic Receptor-Mediated Inhibition of NF-κB and AP-1 in Dendritic Cells. J Immunol. 2016;196(2):637-644.  https://doi.org/10.4049/jimmunol.1501206
  16. Müller T, Dürk Th, Blumenthal B, Grimm M, Cicko S, Panther E, Sorichter St, Herouy Y, Di Virgilio Fr, Ferrari D, Norgauer J, Idzko M. 5-Hydroxytryptamine Modulates Migration, Cytokine and Chemokine Release and T-Cell Priming Capacity of Dendritic Cells In Vitro and In Vivo. PLoS One. 2009;4(7):e6453. https://doi.org/10.1371/journal.pone.0006453
  17. Sviridova AA, Melnikov MV, Belousova OO, Rogovskii VS, Pashenkov MV, Boyko AN. Serotonergic system as a therapeutic target in multiple sclerosis. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2019;119:2(2):64-72. (In Russ.). https://doi.org/10.17116/jnevro20191192264
  18. Bhat R, Mahapatra S, Axtell RC, Steinman L. Amelioration of ongoing experimental autoimmune encephalomyelitis with fluoxetine. J Neuroimmunol. 2017;313:77-81.  https://doi.org/10.1016/j.jneuroim.2017.10.012
  19. Mitsonis CI, Zervas IM, Potagas CM, Mitropoulos PA, Dimopoulos NP, Sfagos CA, Papadimitriou GN, Vassilopoulos DC. Effects of escitalopram on stress-related relapses in women with multiple sclerosis: an open-label, randomized, controlled, one-year follow-up study. Eur Neuropsychopharmacol. 2010;20(2):123-131.  https://doi.org/10.1016/j.euroneuro.2009.10.004
  20. Mostert JP, Admiraal-Behloul F, Hoogduin JM, Luyendijk J, Heersema DJ, van Buchem MA, De Keyser J. Effects of fluoxetine on disease activity in relapsing multiple sclerosis: a double-blind, placebo-controlled, exploratory study. J Neurol Neurosurg Psychiatry. 2008;79(9):1027-1031. https://doi.org/10.1136/jnnp.2007.139345
  21. Idzko M, Panther E, Stratz C. The serotoninergic receptors of human dendritic cells: identification and coupling to cytokine release. J Immunol. 2004;172:6011-6019.
  22. Szabo A, Gogolak P, Koncz G, Foldvari Z, Pazmandi K, Miltner N, Poliska S, Bacsi A, Djurovic S, Rajnavolgyi E. Immunomodulatory capacity of the serotonin receptor 5-HT2B in a subset of human dendritic cells. Sci Rep. 2018;8(1):1765. https://doi.org/10.1038/s41598-018-20173-y
  23. Katoh N, Soga F, Nara T, Tamagawa-Mineoka R, Nin M, Kotani H, Masuda K, Kishimoto S. Effect of serotonin on the differentiation of human monocytes into dendritic cells. Clin Exp Immunol. 2006;146(2):354-361. 

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.