The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Smagina I.V.

Altai State Medical University;
Regional Clinical Hospital

Elchaninova S.A.

Altai State Medical University

Palaschenko A.S.

Altai State Medical University;
Regional Clinical Hospital

Galaktionova L.P.

Altai State Medical University

Pathological and protective effects of tumor necrosis factor-alpha in multiple sclerosis

Authors:

Smagina I.V., Elchaninova S.A., Palaschenko A.S., Galaktionova L.P.

More about the authors

Read: 5443 times


To cite this article:

Smagina IV, Elchaninova SA, Palaschenko AS, Galaktionova LP. Pathological and protective effects of tumor necrosis factor-alpha in multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(10‑2):14‑20. (In Russ.)
https://doi.org/10.17116/jnevro201911910214

Recommended articles:
Surgical treatment of seco­ndary trigeminal neuralgia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):203-209
Quality of life of patients with multiple scle­rosis in the Smolensk region. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):36-40
Hormonal contraception methods and multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):24-30
Autoimmune diseases of central nervous system and respiratory viral infe­ctions in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):39-46
Epidemiology of multiple scle­rosis in the city of Novo­sibirsk. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):119-127

References:

  1. Autoimmune diseases in neurology. Clinical guideline. Zavalishin IA, Piradov MA, Boyko AN, Nikitin SS, Spirin NN, Peresedova AV, eds. Vol. 1. M.: ROOI Zdorov’e cheloveka; 2014. (In Russ.)
  2. Sonar S, Lal G. Role of tumor necrosis factor superfamily in neuroinflammation and autoimmunity. Front Immunol. 2015;20(6):364. https://doi.org/10.3389/fimmu.2015.00364
  3. Palle P, Monaghan K, Milne S, Wan E. Cytokine signaling in multiple sclerosis and its therapeutic applications. Medical Sciences. 2017;5(4):23. https://doi.org/10.3390/medsci5040023
  4. Tomioka R, Matsui M. Biomarkers for multiple sclerosis. Internal Medicine. 2014;53(5):361-365. https://doi.org/10.2169/internalmedicine.53.1246
  5. Montgomery S, Bowers W. Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. Journal of Neuroimmune Pharmacology. 2011;7(1):42-59. https://doi.org/10.1007/s11481-011-9287-2
  6. Kallaur AP, Oliveira SR, Simão ANC, Alfieri DF, Flauzino T, Lopes J, de Carvalho Jennings Pereira WL, de Meleck Proença C, Borelli SD, Kaimen-Maciel DR, Maes M, Reiche EMV. Cytokine profile in patients with progressive multiple sclerosis and its association with disease progression and disability. Mol Neurobiol. 2017;54(4):2950-2960. https://doi.org/10.1007/s12035-016-9846-x
  7. Stadelmann C, Wegner C, Brück W. Inflammation, demyelination, and degeneration — recent insights from MS pathology. Biochim Biophys Acta. 2011;1812(2):275-282. https://doi.org/10.1016/j.bbadis.2010.07.007
  8. Frohman EM, Eagar T, Monson N, Stuve O, Karandikar N. Immunologic mechanisms of multiple sclerosis. Neuroimaging Clin N Am. 2008;18(4):577-588. https://doi.org/10.1016/j.nic.2008.06.009
  9. Rostami A, Ciric B. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J Neurol Sci. 2013;333(1-2):76-87. https://doi.org/10.1016/j.jns.2013.03.002
  10. Junker A, Ivanidze J, Malotka J, Eiglmeier I, Lassmann H, Wekerle H, Meinl E, Hohlfeld R, Dornmair K. Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain. 2007;130(11):2789-2799. https://doi.org/10.1093/brain/awm214
  11. Bashford-Rogers RJM, Smith KGC, Thomas DC. Antibody repertoire analysis in polygenic autoimmune diseases. Immunology. 2018;155(1):3-17. https://doi.org/10.1111/imm.12927
  12. Freedman MS. Disease-modifying drugs for multiple sclerosis: current and future aspects. Expert Opin Pharmacother. 2006;7(suppl 1):1-9. https://doi.org/10.1517/14656566.7.1.S1
  13. Ugarte-Berzal E, Berghmans N, Boon L, Martens E, Vandooren J, Cauwe B, Thijs G, Proost P, Van Damme J, Opdenakker G. Gelatinase B/matrix metalloproteinase-9 is a phase-specific effector molecule, independent from Fas, in experimental autoimmune encephalomyelitis. PLoS One. 2018;13(10):e0197944. https://doi.org/10.1371/journal.pone.0197944
  14. Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol. 2018;19(7):696-707. https://doi.org/10.1038/s41590-018-0135-x
  15. Lehmann-Horn K, Kinzel S, Weber MS. Deciphering the role of B cells in multiple sclerosis — towards specific targeting of pathogenic function. Int J Mol Sci. 2017;18(10):2048. https://doi.org/10.3390/ijms18102048
  16. Vasileiadis GK, Dardiotis E, Mavropoulos A, Tsouris Z, Tsimourtou V, Bogdanos DP, Sakkas LI, Hadjigeorgiou GM. Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? Auto Immun Highlights. 2018;9(1):9. https://doi.org/10.1007/s13317-018-0109-x
  17. Bittner S, Ruck T, Wiendl H, Grauer OM, Meuth SG. Targeting B cells in relapsing-remitting multiple sclerosis: from pathophysiology to optimal clinical management. Ther Adv Neurol Disord. 2017;10(1):51-66. https://doi.org/10.1177/1756285616666741
  18. Volpe E, Sambucci M, Battistini L, Borsellino G. Fas-fas ligand: checkpoint of t cell functions in multiple sclerosis. Front Immunol. 2016;7:382. https://doi.org/10.3389/fimmu.2016.00382
  19. Palle P, Monaghan KL, Milne SM, Wan ECK. Cytokine signaling in multiple sclerosis and its therapeutic applications. Med Sci. 2017;5:23. https://doi.org/10.3390/medsci5040023
  20. Correale J, Marrodan M, Ysrraelit MC. Mechanisms of neurodegeneration and axonal dysfunction in progressive multiple sclerosis. Biomedicines. 2019;7(1):14. https://doi.org/10.3390/biomedicines7010014
  21. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997;385(6618):729-733. https://doi.org/10.1038/385729a0
  22. Boulanger LM. Immune proteins in brain development and synaptic plasticity. Neuron. 2009;64:93-109. https://doi.org/10.1016/j.neuron.2009.09.001
  23. Lieberman AP, Pitha PM, Shin HS, Shin ML. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc Natl Acad Sci USA. 1989;86:6348-6352. https://doi.org/10.1073/pnas.86.16.6348
  24. Tarlow MJ, Jenkins R, Comis SD, Osborne MP, Stephens S, Stanley P, Crocker J. Ependymal cells of the choroid plexus express tumour necrosis factor-alpha. Neuropathol Appl Neurobiol. 1993;19:324-328. https://doi.org/10.1111/j.1365-2990.1993.tb00447.x
  25. Sawada M, Kondo N, Suzumura A, Marunouchi T. Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res. 1989;491:394-397. https://doi.org/10.1016/0006-8993(89)90078-4
  26. Probert L. TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. Neuroscience. 2015;302(27):2-22. https://doi.org/10.1016/j.neuroscience.2015.06.038
  27. Sipe KJ, Dantzer R, Kelley KW, Weyhenmeyer JA. Expression of the 75 kDA TNF receptor and its role in contact-mediated neuronal cell death. Brain Res Mol Brain Res. 1998;62(2):111-121. https://doi.org/10.1016/S0169-328X(98)00221-6
  28. Sipe KJ, Srisawasdi D, Dantzer R, Kelley KW, Weyhenmeyer JA. An endogenous 55 kDa TNF receptor mediates cell death in a neural cell line. Brain Res Mol Brain Res. 1996;38(2):222-232. https://doi.org/10.1016/0169-328X(95)00310-O
  29. Fernandez-Botran R. Soluble cytokine receptors: novel immunotherapeutic agents. Expert Opin Investig Drugs. 2000;9(3):497-514. https://doi.org/10.1517/13543784.9.3.497
  30. Mehta AK, Gracias DT, Croft M. TNF activity and T cells. Cytokine. 2018;101:14-18. https://doi.org/10.1016/j.cyto.2016.08.003
  31. Pegoretti V, Baron W, Laman JD, Eisel ULM. Selective modulation of TNF-TNFRs signaling: insights for multiple sclerosis treatment. Front Immunol. 2018;30(9):925. https://doi.org/10.3389/fimmu.2018.00925
  32. Yang S, Wang J, Brand DD, Zheng SG. Role of TNF-TNF receptor 2 signal in regulatory T cells and its therapeutic implications. Front Immunol. 2018;19(9):784. https://doi.org/10.3389/fimmu.2018.00784
  33. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833(12):3448-3459. https://doi.org/10.1016/j.bbamcr.2013.06.001
  34. Inogés S, Merino J, Bandrés E, De Castro P, Subirá ML, Sánchez-Ibarrola A. Cytokine flow cytometry differentiates the clinical status of multiple sclerosis (MS) patients. Clin Exp Immunol. 1999;115(3):521-525. https://doi.org/10.1046%2Fj.1365-2249.1999.00816.x
  35. Kahl KG, Kruse N, Toyka KV, Rieckmann P. Serial analysis of cytokine mRNA profiles in whole blood samples from patients with early multiple sclerosis. J Neurol Sci. 2002;200(1-2):53-55. https://doi.org/10.1016/S0022-510X(02)00136-3
  36. Raine CS, Bonetti B, Cannella B. Multiple sclerosis: expression of molecules of the tumor necrosis factor ligand and receptor families in relationship to the demyelinated plaque. Rev Neurol (Paris). 1998;154(8-9):577-585.
  37. Matusevicius D, Navikas V, Söderström M, Xiao B-G, Haglund M, Fredrikson S, Link H. Multiple sclerosis: the proinflammatory cytokines lymphotoxin-α and tumour necrosis factor-α are upregulated in cerebrospinal fluid mononuclear cells. Journal of Neuroimmunology. 1996;66:115-123. https://doi.org/10.1016/0165-5728(96)00032-X
  38. Hohnoki K, Inoue A, Koh CS. Elevated serum levels of IFN-γ, IL-4 and TNF-α/unelevated serum levels of IL-10 in patients with demyelinating diseases during the acute stage. Journal of Neuroimmunology. 1998;87:27-32. https://doi.org/10.1016/S0165-5728(98)00053-8
  39. Graber JJ, Dhib-Jalbut S. Biomarkers of disease activity in multiple sclerosis. Journal of the Neurological Sciences. 2011;305:1-10. https://doi.org/10.1016/j.jns.2011.03.026
  40. Haviv R, Stein R. Neuronal expression of TNFR. J Neurosci Res. 1998;52:380-389. https://doi.org/10.1002/(SICI)1097-4547(19980515)52:4%3C380::AID-JNR2%3E3.0.CO;2-5
  41. Rovaris M, Barnes D, Woodrofe N, du Boulay GH, Thorpe JW, Thompson AJ, McDonald W, Miller DH. Patterns of disease activity in multiple sclerosis patients: A study with quantitative gadolinium-enhanced brain MRI and cytokine measurement in different clinical subgroups. Journal of Neurology. 1996;243:536-542. https://doi.org/10.1007/BF00886876
  42. Matsushita T, Tateishi T, Isobe N, Yonekawa T, Yamasaki R, Matsuse D, Murai H, Kira J. Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLoS One. 2013;8(4):61835. https://doi.org/10.1371/journal.pone.0061835
  43. Rieckmann P, Albrecht M, Kitze B. Cytokine mRNA levels in mononuclear blood cells from patients with multiple sclerosis. Neurology. 1994;44:1523-1528. https://doi.org/10.1212/wnl.44.8.1523
  44. Sipe KJ, Srisawasdi D, Dantzer R, Kelley KW, Weyhenmeyer JA. An endogenous 55 kDa TNF receptor mediates cell death in neural cell line. Brain Res Mol Brain Res. 1998;38:222-232. https://doi.org/10.1016/0169-328X(95)00310-O
  45. Benveniste EN, Benos DJ. TNF-alpha- and IFN-gamma-mediated signal transduction pathways: effects on glial cell gene expression and function. FASEB J. 1995;9(15):1577-1584. https://doi.org/10.1096/fasebj.9.15.8529837
  46. Spuler S, Yousry T, Scheller A, Voltz R, Holler E, Hartmann M, Wick M, Hohlfeld R. Multiple sclerosis: prospective analysis of TNF-alpha and 55kDa TNF receptor in CSF and serum in correlation with clinical and MRI activity. Neuroimmunol. 1996;66:57-64. https://doi.org/10.1016/0165-5728(96)00020-3
  47. Kraus J, Kuehne BS, Tofighi J, Frielinghaus P, Stolz E, Blaes F, Laske C, Engelhardt B, Traupe H, Kaps M, Oschmann P. Serum cytokine levels do not correlate with disease activity and severity assessed by brain MRI in multiple sclerosis. Acta Neurol Scand. 2002;105(4):300-308. https://doi.org/10.1034/j.1600-0404.2002.1o199.x
  48. Baker D, Butler D, Scallon BJ, O’Neill JK, Turk JL, Feldmann M. Control of established experimental allergic encephalomyelitis by inhibition of tumor necrosis factor (TNF) activity within the central nervous system using monoclonal antibodies and TNF receptor-immunoglobulin fusion proteins. Eur J Immunol. 1994;24:2040-2048. https://doi.org/10.1002/eji.1830240916
  49. Ruddle NH, Bergman CM, McGrath KM, Lingenheld EG, Grunnet ML, Padula SJ, Clark RB. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med. 1990;172:1193-1200. https://doi.org/10.1084/jem.172.4.1193
  50. Murphy CA, Hoek RM, Wiekowski MT, Lira SA, Sedgwick JD. Interactions between hemopoietically derived TNF and central nervous system-resident glial chemokines underlie initiation of autoimmune inflammation in the brain. J Immunol. 2002;169:7054-7062. https://doi.org/10.4049/jimmunol.169.12.7054
  51. Frei K, Eugster HP, Bopst M, Constantinescu CS, Lavi E, Fontana A. Tumor necrosis factor alpha and lymphotoxin alpha are not required for induction of acute experimental autoimmune encephalomyelitis. J Exp Med. 1997;185:2177-2182. https://doi.org/10.1084/jem.185.12.2177
  52. Suvannavejh GC, Lee HO, Padilla J, Dal Canto MC, Barrett T A, Miller SD. Divergent roles for p55 and p75 tumor necrosis factor receptors in the pathogenesis of MOG(35-55)-induced experimental autoimmune encephalomyelitis. Cell Immunol. 2000;205(1):24-33. https://doi.org/10.1006/cimm.2000.1706
  53. Eugster HP, Frei K, Bachmann R, Bluethmann H, Lassmann H, Fontana A. Severity of symptoms and demyelination in MOG-induced EAE depends on TNFR1. Eur J Immunol. 1999;29(2):626-632. https://doi.org/10.1002/(SICI)1521-4141(199902)29:02%3C626::AID-IMMU626%3E3.0.CO;2-A
  54. Dong Y, Fischer R, Naude PJ, Maier O, Nyakas C, Duffey M, Van der Zee EA, Dekens D, Douwenga W, Herrmann A, Guenzi E, Kontermann RE, Pfizenmaier K. Eisel UL. Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration. Proc Natl Acad Sci USA. 2016;113:12304-12309. https://doi.org/10.1073/pnas.1605195113
  55. Gogoleva VS, Atretkhany K-SN, Drutskaya MS, Mufazalov IA, Kruglov AA, Nedospasov SA. Cytokines as mediators of neuroinflammation in experimental autoimmune encephalomyelitis. Biochemistry (Moscow). 2018;83(9):1089-1103. https://doi.org/10.1134/S0006297918090110
  56. Wolf Y, Shemer A, Polonsky M, Gross M, Mildner A, Yona S, David E, Kim KW, Goldmann T, Amit I, Heikenwalder M, Nedospasov S, Prinz M, Friedman N, Jung S. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J Exp Med. 2017;214:905-917. https://doi.org/10.1084/jem.20160499
  57. Gao H, Danzi MC, Choi CS, Taherian M, Dalby-Hansen C, Ellman DG, Madsen PM, Bixby JL, Lemmon VP, Lambertsen KL, Brambilla R. Opposing functions of microglial and macrophagic TNFR2 in the pathogenesis of experimental autoimmune encephalomyelitis. Cell Rep. 2017;18:198-212. https://doi.org/10.1016/j.celrep.2016.11.083
  58. Selmaj KW, Raine CS. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol. 1988;23:339-346. https://doi.org/10.1002/ana.410230405
  59. Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel UL. Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem. 2004;279:32869-32881. https://doi.org/10.1074/jbc.M311766200
  60. Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α. Journal of Neuroscience. 2005;25(12):3219-3228. https://doi.org/10.1523/JNEUROSCI.4486-04.2005
  61. Huang C, Nazarian R, Lee J, Espinosa-Jeffery A, Vellis J. Tumor necrosis factor modulates transcription of myelin basic protein gene through nuclear factor kappa B in a human oligodendroglioma cell line. Int J Neurosci. 2002;20:289. https://doi.org/10.1016/S0736-5748(02)00022-9
  62. Eugster HP, Frei K, Bachmann R, Lassman H, Fontana A. Severity of symptoms and demyelination in MOG-induced EAE depends on TNFR1. Eur J Immunol. 1999;29:626-632. https://doi.org/10.1002/(SICI)1521-4141(199902)29:02%3C626::AID-IMMU626%3E3.0.CO;2-A
  63. Rempe RG, Hartz AM, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab. 2016;36(9):1481-1507. https://doi.org/10.1177%2F0271678X16655551
  64. Nakamura Y. Regulating factors for microiglial activation. Biol Pharm Bull. 2002;25;945-953. https://doi.org/10.1248/bpb.25.945
  65. Steinman L. Some misconceptions about understanding autoimmunity through experiments with knockouts. J Exp Med. 1997;185:2039-2046. https://doi.org/10.1084/jem.185.12.2039
  66. Pribiag H, Stellwagen D. TNF-alpha downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors. J Neurosci. 2013;33:15879-15893. https://doi.org/10.1523/JNEUROSCI.0530-13.2013
  67. Lewitus GM, Pribiag H, Duseja R, St-Hilaire M, Stellwagen D. An adaptive role of TNF in the regulation of striatal synapses. J Neurosci. 2014;34:6146-6155. https://doi.org/10.1523/JNEUROSCI.3481-13.2014
  68. He P, Liu Q, Wu J, Shen Y. Genetic deletion of TNF receptor suppresses excitatory synaptic transmission via reducing AMPA receptor synaptic localization in cortical neurons. FASEB J. 2012;26:334-345. https://doi.org/10.1096/fj.11-192716
  69. Santello M, Bezzi P, Volterra A. TNF controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron. 2011;69:988-1001. https://doi.org/10.1016/j.neuron.2011.02.003
  70. Yang S, Xie C, Chen Y, Wang J, Chen X, Lu Z, June RR, Zheng SG. Differential roles of TNFα-TNFR1 and TNFα-TNFR2 in the differentiation and function of CD4+Foxp3+ induced Treg cells in vitro and in vivo periphery in autoimmune diseases. Cell Death Dis. 2019;10(1):27. https://doi.org/10.1038/s41419-018-1266-6
  71. Holtmann MH, Neurath MF. Differential TNF-signaling in chronic inflammatory disorders. Curr Mol Med. 2004;4:439-444. https://doi.org/10.2174/1566524043360636
  72. Van Oosten BW, Barkhof F, Truyen L, Boringa JB, Bertelsmann FW, von Blomberg BM, Woody JN, Hartung H-P, Polman CH. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology. 1996;47:1531-1534. https://doi.org/10.1212/WNL.47.6.1531
  73. Multiple Sclerosis Study Group TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. The lenercept multiple sclerosis study group and the University of British Columbia MS/MRI analysis group. Neurology. 1999;53:457-465. https://doi.org/10.1212/WNL.53.3.457
  74. Stubgen JP. Tumor necrosis factor-antagonists and neuropathy. Muscle Nerve. 2008;37:281-292. https://doi.org/10.1002/mus.20924
  75. Bosch X, Saiz A, Ramos-Casals M. Monoclonal antibody therapy-associated neurological disorders. Nat Rev Neurol. 2011;7:165-172. https://doi.org/10.1038/nrneurol.2011.1
  76. Fernández-Espartero MC, Pérez-Zafrilla B, Naranjo A, Esteban C, Ortiz AM, Gómez-Reino JJ, Carmona L; BIOBADASER Study Group. Demyelinating disease in patients treated with TNF antagonists in rheumatology: data from BIOBADASER, a pharmacovigilance database, and a systematic review. Semin Arthritis Rheum. 2011;40(4):330-337. https://doi.org/10.1016/j.semarthrit.2010.06.004
  77. Robinson WH, Genovese MC, Moreland LW. Demyelinating and neurologic events reported in association with tumor necrosis factor antagonism: by what mechanisms could tumor necrosis factor alpha antagonists improve rheumatoid arthritis but exacerbate multiple sclerosis? Arthritis Rheum. 2001;44:1977-1983. https://doi.org/10.1002/1529-0131(200109)44:9<1977::AID-ART345>3.0.CO;2-6
  78. Prinz JC. Autoimmune-like syndromes during TNF blockade: does infection have a role? Nat Rev. 2011;7:429-434. https://doi.org/10.1038/nrrheum.2011.35
  79. Kaltsonoudis E, Zikou AK, Voulgari PV, Konitsiotis S, Argyropoulou MI, Drosos AA. Neurological adverse events in patients receiving anti-TNF therapy: a prospective imaging and electrophysiological study. Arthritis Res Ther. 2014;16:125. https://doi.org/10.1186/ar4582
  80. Gregory AP, Dendrou CA, Attfield KE, Haghikia A, Xifara DK, Butter F, Poschmann G, Kaur G, Lambert L, Leach OA, Promel S, Punwani D, Felce JH, Davis SJ, Gold R, Nielsen FC, Siegel RM, Mann M, Bell JI, McVean G, Fugger L. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature. 2012;488:508-511. https://doi.org/10.1038/nature11307
  81. Efimov GA, Kruglov AA, Khlopchatnikova ZV, Rozov FN, Mokhonov VV, Rose-John S, Scheller J, Gordon S, Stacey M, Drutskaya MS, Tillib SV, Nedospasov SA. Cell-type-restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proc Natl Acad SciUSA. 2016;113:3006-3011. https://doi.org/10.1073/pnas.1520175113

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.