The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Boĭko O.V.

Moskovskiĭ gorodskoĭ tsentr rasseiannogo skleroza na baze Gorodskoĭ klinicheskoĭ bol'nitsy #11

Khoroshylova I.I.

OOO «Neuroclinica», Moscow, Russia

Petrov S.V.

North-Western State Medical University named after I.I. Mechnikov, Saint-Petersburg, Russia, Elizabethan hospital, Saint-Petersburg, Russia

Lashch N.Iu.

Kafedra nevrologii i neĭrokhirurgii Rossiĭskogo natsional'nogo issledovatel'skogo meditsinskogo universiteta

Guseva M.E.

GBOU VPO «Rossiĭskiĭ natsionalnyĭ issledovatelskiĭ meditsinskiĭ universitet im. N.I. Pirogova», Moskva

Boĭko A.N.

KGBUZ "Krasnoiarskiĭ kraevoĭ Tsentr po profilaktike i bor'be so SPID i infektsionnymi zabolevaniiami"

Additional possible mechanisms of the action of ocrelizumab in multiple sclerosis on example of a case-report

Authors:

Boĭko O.V., Khoroshylova I.I., Petrov S.V., Lashch N.Iu., Guseva M.E., Boĭko A.N.

More about the authors

Read: 1454 times


To cite this article:

Boĭko OV, Khoroshylova II, Petrov SV, Lashch NIu, Guseva ME, Boĭko AN. Additional possible mechanisms of the action of ocrelizumab in multiple sclerosis on example of a case-report. S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(8‑2):116‑120. (In Russ.)
https://doi.org/10.17116/jnevro2018118082116

Recommended articles:
Cognitive impairment in patients with multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4-2):67-73
Surgical treatment of seco­ndary trigeminal neuralgia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):203-209
Quality of life of patients with multiple scle­rosis in the Smolensk region. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):36-40
Hormonal contraception methods and multiple scle­rosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):24-30
Epidemiology of multiple scle­rosis in the city of Novo­sibirsk. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):119-127
A clinical case of X-linked adre­noleukodystrophy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4):102-107

References:

  1. Boyko AN, Gusev EI. Current algorithms of diagnosis and treatment of multiple sclerosis based on the individual assessment of the patient. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2017;117(2):92-106. (In Russ.)
  2. Soerensen PS. New management algorithms in multiple sclerosis. Curr Opin Neurol. 2014;27(3):246-259. https://doi.org/10.1097/WCO.0000000000000096
  3. Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S, Chin P, Mairon N, Garren H, Kappos L. OPERA I and OPERA II Clinical Investigators. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2017;376(3):221-234. https://doi.org/10.1056/NEJMoa1601277
  4. Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, de Seze J, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Rammohan KW, Selmaj K, Traboulsee A, Sauter A, Masterman D, Fontoura P, Belachew S, Garren H, Mairon N, Chin P, Wolinsky JS. ORATORIO Clinical Investigators Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N Engl J Med. 2017;376(3):209-220. https://doi.org/10.1056/NEJMoa1606468
  5. Hauser SL, Belachew S, Kappos L. Ocrelizumab in primary progressive and relapsing multiple sclerosis. N Engl J Med. 2017;376(17):1694. https://doi.org/10.1056/NEJMc1702076
  6. Kappos L, De Stefano N, Freedman MS, Cree BA, Radue EW, Sprenger T, Sormani MP, Smith T, Häring DA, Piani Meier D, Tomic D. Inclusion of brain volume loss in a revised measure of «no evidence of disease activity» (NEDA-4) in relapsing-remitting multiple sclerosis. Mult Scler. 2016;22(10):1297-1305. https://doi.org/10.1177/1352458515616701
  7. Lehmann-Horn K, Kinzel S, Weber MS. Deciphering the Role of B Cells in Multiple Sclerosis-Towards Specific Targeting of Pathogenic Function. Int J Mol Sci. 2017;18(10):2048. https://doi.org/10.3390/ijms18102048
  8. Mulero P, Midaglia L, Montalban X. Ocrelizumab: a new milestone in multiple sclerosis therapy. Ther Adv Neurol Disord. 2018;11:1756286418773025. https://doi.org/10.1177/1756286418773025
  9. Yang H, Duchesneau E, Foster R, Guerin A, Ma E, Thomas NP. Cost-effectiveness analysis of ocrelizumab versus subcutaneous interferon beta-1a for the treatment of relapsing multiple sclerosis. J Med Econ. 2017;20(10):1056-1065. https://doi.org/10.1080/13696998.2017
  10. Ireland SJ, Blazek M, Harp CT, Greenberg B, Frohman EM, Davis LS, Monson NL. Antibody-independent B cell effector functions in relapsing remitting multiple sclerosis: clues to increased inflammatory and reduced regulatory B cell capacity. Autoimmunity. 2012;45(5):400-414. https://doi.org/10.3109/08916934.2012.665529
  11. Hultin LE, Hausner MA, Hultin PM, Giorgi JV. CD20 (pan-B cell) antigen is expressed at a low level on a subpopulation of human T lymphocytes. Cytometry. 1993;14:196-204.
  12. Mease PJ. B cell-targeted therapy in autoimmune disease: rationale, mechanisms, and clinical application. J Rheumatol. 2008;35:1245-1255.
  13. Palanichamy A, Jahn S, Nickles D, Derstine M, Abounasr A, Hauser SL, Baranzini SE, Leppert D, von Büdingen HC. Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J Immunol. 2014;193:580-586. https://doi.org/10.4049/jimmunol.1400118
  14. Frau J, Coghe G, Lorefice L, Fenu G, Cocco E. New horizons for multiple sclerosis therapeutics: milestones in the development of ocrelizumab. Neuropsychiatr Dis Treat. 2018;14:1093-1099. https://doi.org/10.2147/NDT.S147874
  15. Graves J, Vinayagasundaram U, Mowry EM, Matthews IR, Marino JA, Cheng J, Waubant E. Effects of rituximab on lymphocytes in multiple sclerosis and neuromyelitis optica. Multiple Sclerosis and Related Disorders. 2014;3(2):244-252. https://doi.org/10.1016/j.msard.2013.10.003
  16. Weber MS, Prod’homme T, Patarroyo JC, Molnarfi N, Karnezis T, Lehmann-Horn K, Danilenko DM, Eastham-Anderson J, Slavin AJ, Linington C, Bernard CC, Martin F, Zamvil SS. B-cell activation influences T cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol. 2010;68(3):369-383. https://doi.org/10.1002/ana.22081
  17. Milo R. Therapeutic strategies targeting B-cells in multiple sclerosis. Autoimmun Rev. 2016;15:714-718.
  18. Popova EV, Boĭko AN, Khachanova NV, Sharanova SN. Epstein—Barr virus in the pathogenesis of multiple sclerosis (a review). Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2014;114(2):29-34. (In Russ.)
  19. Sundström P. Managing Epstein—Barr virus and other risk factors in MS-Future perspectives. Acta Neurol Scand. 2017;136(suppl 201):31-33. https://doi.org/10.1111/ane.12841
  20. Serafini B, Scorsi E, Rosicarelli B, Rigau V, Thouvenot E, Aloisi F. Massive intracerebral Epstein-Barr virus reactivation in lethal multiple sclerosis relapse after natalizumab withdrawal. J Neuroimmunol. 2017;307:14-17. https://doi.org/10.1016/j.jneuroim.2017.03.013
  21. Serafini B, Zandee S, Rosicarelli B, Scorsi E, Veroni C, Larochelle C, D’Alfonso S, Prat A, Aloisi F. Epstein-Barr virus-associated immune reconstitution inflammatory syndrome as possible cause of fulminant multiple sclerosis relapse after natalizumab interruption. J Neuroimmunol. 2018;319:9-12. https://doi.org/10.1016/j.jneuroim.2018.03.011
  22. Hassani A, Corboy JR, Al-Salam S, Khan G. Epstein-Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS One. 2018;13(2):e0192109. https://doi.org/10.1371/journal.pone.0192109
  23. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14(2):164-174.
  24. Demaerel P, Robberecht W, Casteels I, Wilms G, Medaer R, Carton H, Baert AL. Focal leptomeningeal MR enhancement along the chiasm as a presenting sign of multiple sclerosis. J Comput Assist Tomogr. 1995;19(2):297-298.
  25. Avasarala J. Leptomeningeal enhancement for multiple sclerosis: another radiological biomarker for a relapse? JAMA Neurol. 2017;74(6):745-746. https://doi.org/10.1001/jamaneurol.2017.0123
  26. Absinta M, Vuolo L, Rao A, Nair G, Sati P, Cortese IC, Ohayon J, Fenton K, Reyes-Mantilla MI, Maric D, Calabresi PA, Butman JA, Pardo CA, Reich DS Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology. 2015;85(1):18-28. https://doi.org/10.1212/WNL.0000000000001587
  27. Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, Reynolds R, Aloisi F. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130:1089-1104.
  28. Gardner C, Magliozzi R, Durrenberger PF, Howell OW, Rundle J, Reynolds R. Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space of MOG-immunized rats. Brain. 2013;136(12):3596-3608. https://doi.org/10.1093/brain/awt279
  29. Zivadinov R, Ramasamy DP, Vaneckova M, Gandhi S, Chandra A, Hagemeier J, Bergsland N, Polak P, Benedict RH, Hojnacki D, Weinstock-Guttman B. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: A retrospective, pilot, observational longitudinal study. Multiple Sclerosis J. 2016;23(10):1336-1345. https://doi.org/10.1177/1352458516678083
  30. Eisele P, Griebe M, Szabo K, Wolf ME, Alonso A, Engelhardt B, Hennerici MG, Gass A. Investigation of leptomeningeal enhancement in MS: a postcontrast FLAIR MRI study. Neurology. 2015;84(8):770-775. https://doi.org/10.1212/WNL.0000000000001286
  31. Harrison DM, Wang KY, Fiol J, Naunton K, Royal W 3rd, Hua J, Izbudak I. Leptomeningeal enhancement at 7T in multiple sclerosis: frequency, morphology, and relationship to cortical volume. J Neuroimaging. 2017;27(5):461-468. https://doi.org/10.1111/jon
  32. Makshakov G, Magonov E, Totolyan N, Nazarov V, Lapin S, Mazing A, Verbitskaya E, Trofimova T, Krasnov V, Shumilina M, Skoromets A, Evdoshenko E. Leptomeningeal Contrast Enhancement Is Associated with Disability Progression and Grey Matter Atrophy in Multiple Sclerosis. Neurol Res Int. 2017;2017:8652463. https://doi.org/10.1155/2017/8652463
  33. von Budingen HC, Kuo TC, Sirota M, van Belle CJ, Apeltsin L, Glanville J, Cree BA, Gourraud PA, Schwartzburg A, Huerta G, Telman D, Sundar PD, Casey T, Cox DR, Hauser SL. B cell exchange across the blood-brain barrier in multiple sclerosis. J Clin Invest. 2012;122(12):4533-4543. https://doi.org/10.1172/JCI63842
  34. Eisele P, Griebe M, Szabo K, Wolf ME, Alonso A, Engelhardt B, Hennerici MG, Gass A. Investigation of leptomeningeal enhancement in MS: A postcontrast FLAIR MRI study. Neurology. 2015;84(8):770-775. https://doi.org/10.1212/WNL.0000000000001286
  35. Fukuoka H, Hirai T, Okuda T, Shigematsu Y, Sasao A, Kimura E, Hirano T, Yano S, Murakami R, Yamashita Y. Comparison of the added value of contrast-enhanced 3D fluid-attenuated inversion recovery and magnetization-prepared rapid acquisition of gradient echo sequences in relation to conventional postcontrast T1-weighted images for the evaluation of leptomeningeal diseases at 3T. Am J Neuroradiol. 2010;31(5):868-873. https://doi.org/10.3174/ajnr.A1937
  36. Long Y, Chen M, Zhang B, Gao C, Zheng Y, Xie L, Gao Q, Yin J. Brain gadolinium enhancement along the ventricular and leptomeningeal regions in patients with aquaporin-4 antibodies in cerebral spinal fluid. J Neuroimmunol. 2014;269(1-2):62-67. https://doi.org/10.1016/j.jneuroim.2014.02.006
  37. Absinta M, Cortese IC, Vuolo L, Nair G, de Alwis MP, Ohayon J, Meani A, Martinelli V, Scotti R, Falini A, Smith BR, Nath A, Jacobson S, Filippi M, Reich DS. Leptomeningeal gadolinium enhancement across the spectrum of chronic neuroinflammatory diseases. Neurology. 2017;88(15):1439-1444. https://doi.org/10.1212/WNL.0000000000003820
  38. Boyko AN., Davydovskaya MV., Hachanova NV., Zaharova MN., Spirin NN., Popova EV., Alifirova VM., Vlasov YaV., Sivertseva SA., Habirov FA., Shumilina MV., Evdoshenko EP. Klinicheskie rekomendatsii po primeneniyu preparata okrelizumab u patsientov s rasseyannym sklerozom. https://www.ructrims.org/files/Klinicheskie_rekomendacii_po%20primeneniyu_preparata_okrelizumab_2018.pdf https://www.ructrims.org/files/Клинические_рекомендации_по%20применению_препарата_окрелизумаб_2018.pdf

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.