The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Sokhranyaeva L.S.

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia

Aniol V.A.

Institut vyssheĭ nervnoĭ deiatel'nosti i neĭrofiziologii RAN;
OOO "Gerofarm";
Institut kristallografii im. A.V. Shubnikova RAN;
Rossiĭskiĭ natsional'nyĭ issledovatel'skiĭ meditsinskiĭ universitet im. N.I. Pirogova, Moskva

Guliaeva N.V.

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Epigenetic modifications of chromatin in epilepsy: a potential mechanism of pharmacoresistance?

Authors:

Sokhranyaeva L.S., Aniol V.A., Guliaeva N.V.

More about the authors

Read: 2576 times


To cite this article:

Sokhranyaeva LS, Aniol VA, Guliaeva NV. Epigenetic modifications of chromatin in epilepsy: a potential mechanism of pharmacoresistance? S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(9‑2):17‑21. (In Russ.)
https://doi.org/10.17116/jnevro20171179217-21

Recommended articles:
Personality profile caused by epilepsy acco­rding to the «Big Five» model. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(10):16-21
Ototoxicity caused by anti-epileptic drugs. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):14-19
Abse­nce status epilepticus in adults. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):47-56

References:

  1. Annegers JF, Hauser WA, Elveback LR. Remission of seizures and relapse in patients with epilepsy. Epilepsia. 1979;20(6):729-737. https://doi.org/10.1111/j.1528-1157.1979.tb04857.x
  2. Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314-319. https://doi.org/10.1056/nejm200002033420503
  3. Schmidt D, Löscher W. Drug resistance in epilepsy: Putative neurobiologic and clinical mechanisms. Epilepsia. 2005;46(6):858-877. https://doi.org/10.1111/j.1528-1167.2005.54904.x
  4. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshé SL, Perucca E, Wiebe S, French J. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2009;51(6):1069-1077. https://doi.org/10.1111/j.1528-1167.2009.02397.x
  5. Berg AT, Langfitt J, Shinnar S, Vickrey BG, Sperling MR, Walczak T, Bazil C, Pacia SV, Spencer SS. How long does it take for partial epilepsy to become intractable? Neurology. 2003;60(2):186-190. https://doi.org/10.1212/01.wnl.0000031792.89992.ec
  6. French JA, Kanner AM, Bautista J, Abou-Khalil B, Browne T, Harden CL, Theodore WH, Bazil C, Stern J, Schachter SC, Bergen D, Hirtz D, Montouris GD, Nespeca M, Gidal B, Marks WJ, Turk WR, Glauser TA. Efficacy and tolerability of the new antiepileptic drugs II: Treatment of refractory epilepsy: Report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2004;62(8):1261-1273. https://doi.org/10.1212/01.wnl.0000123695.22623.32
  7. Sisodiya SM, Lin WR, Harding BN, Squier MV, Thom M. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain. 2002;125(1):22-31. https://doi.org/10.1093/brain/awf002
  8. Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86-98. https://doi.org/10.1602/neurorx.2.1.86
  9. Ling V. Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol. 1997;40(7):3-8.
  10. Zhang Z, Wu JY, Hait WN, Yang JM. Regulation of the stability of p-glycoprotein by ubiquitination. Mol Pharmacol. 2004;66(3):395-403. https://doi.org/10.1124/mol.104.001966
  11. Kwan P, Brodie MJ. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy. Epilepsia. 2005;46(2):224-235. https://doi.org/10.1111/j.0013-9580.2005.31904.x
  12. Remy S, Gabriel S, Urban BW, Dietrich D, Lehmann TN, Elger CE, Heinemann U, Beck H. A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol. 2003;53:469-479. https://doi.org/10.1002/ana.10473
  13. Vreugdenhil M, Wadman WJ. Modulation of sodium currents in rat CA1 neurons by carbamazepine and valproate after kindling epileptogenesis. Epilepsia. 1999;40(11):1512-1522. https://doi.org/10.1111/j.1528-1157.1999.tb02034.x
  14. Remy S, Urban BW, Elger CE, Beck H. Anticonvulsant pharmacology of voltage-gated Na+ channels in hippocampal neurons of control and chronically epileptic rats. Eur J Neurosci. 2003;17(12):2648-2658. https://doi.org/10.1046/j.1460-9568.2003.02710.x
  15. Sharma AK, Rani E, Waheed A, Rajput SK. Pharmacoresistant epilepsy: a current update on non-conventional pharmacological and non-pharmacological interventions. J Epilepsy Res. 2015;5(1):1-8. https://doi.org/10.14581/jer.15001
  16. Straessle A, Loup F, Arabadzisz D, Ohning GV, Fritschy JM. Rapid and long-term alterations of hippocampal GABAB receptors in a mouse model of temporal lobe epilepsy. Eur J Neurosci. 2003;18(8):2213-2226. https://doi.org/10.1046/j.1460-9568.2003.02964.x
  17. Dalic L, Cook MJ. Managing drug-resistant epilepsy: challenges and solutions. Neuropsychiatr Dis Treat. 2016;12:2605-2616. https://doi.org/10.2147/ndt.s84852
  18. Waddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942;3811(14):563-565. https://doi.org/10.1038/150563a0
  19. Landgrave-Gómez J, Mercado-Gómez O, Guevara-Guzmán R. Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci. 2015;9:58. https://doi.org/10.3389/fncel.2015.00058
  20. Dulac C. Brain function and chromatin plasticity. Nature. 2010;465(7299):728-735. https://doi.org/10.1038/nature09231
  21. Goll MG, Bestor TH. Eukariotic cytosine methyltransferases. Annu Rev Biochem. 2005;74(1):481-514. https://doi.org/10.1146/annurev.biochem.74.010904.153721
  22. Sassone-Corsi P. Physiology. When Metabolism and Epigenetics Converge. Science. 339(6116):148-150. https://doi.org/10.1126/science.1233423.
  23. Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. Biochim Biophys Acta. 2014;1839(8):627-643. https://doi.org/10.1016/j.bbagrm.2014.03.001
  24. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41-45. https://doi.org/10.1038/47412
  25. Henshall DC, Kobow K. Epigenetics and Epilepsy. Cold Spring Harb Perspect Med. 2015;4(4):108-111. https://doi.org/10.1101/cshperspect.a022731
  26. Kobow K, Blümcke I. Epigenetics in epilepsy. Neurosci Lett. 2017. https://doi.org/10.1016/j.neulet.2017.01.012
  27. Berkovic SF, Mulley JC, Scheffer IE, Petrou S. Human epilepsies: interaction of genetic and acquired factors. Trends Neurosci. 2006;29(7):391-397. https://doi.org/10.1016/j.tins.2006.05.009
  28. Najm I, Jehi L, Palmini A, Gonzalez-Martinez J, Paglioli E, Bingaman W. Temporal patterns and mechanisms of epilepsy surgery failure. Epilepsia. 2013;54(5):772-782. https://doi.org/10.1111/epi.12152
  29. Jamali S, Bartolomei F, Robaglia-Schlupp A, Massacrier A, Peragut JC, Régis J, Dufour H, Ravid R, Roll P, Pereira S, Royer B, Roeckel-Trevisiol N, Fontaine M, Guye M, Boucraut J, Chauvel P, Cau P, Szepetowski P. Large-scale expression study of human mesial temporal lobe epilepsy: evidence for dysregulation of the neurotransmission and complement systems in the entorhinal cortex. Brain. 2006;129(3):625-641. https://doi.org/10.1093/brain/awl001
  30. Kobow K, Blümcke I. The methylation hypothesis: Do epigenetic chromatin modifications play a role in epileptogenesis? Epilepsia. 2011;52(4):15-19. https://doi.org/10.1111/j.1528-1167.2011.03145.x
  31. Dębski KJ, Pitkanen A, Puhakka N, Bot AM, Khurana I, Harikrishnan K, Ziemann M, Kaspi A, El-Osta A, Lukasiuk K, Kobow K. Etiology matters — genomic dna methylation patterns in three rat models of acquired epilepsy. Sci Rep. 2016;6(1):25668. https://doi.org/10.1038/srep25668
  32. Miller-Delaney SFC, Bryan K, Das S, McKiernan RC, Bray IM, Reynolds JP, Gwinn R, Stallings RL, Henshall DC. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain. 2014;138(3):616-631. https://doi.org/10.1093/brain/awu373
  33. Khudoerkov RM. Intranuclear histone changes in neurons of different types in a «mirror» epileptiform focus in the rat brain. Neurosci Behav Physiol. 1980;10(6):522-525. https://doi.org/10.1007/bf01195524
  34. Sng JC, Taniura H, Yoneda Y. Histone modifications in kainate-induced status epilepticus. Eur J Neurosci. 2006;23(5):1269-1282. https://doi.org/10.1111/j.1460-9568.2006.04641.x
  35. Huang Y, Doherty JJ, Dingledine R. Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus. J Neurosci. 2002;22(19):8422-8428.
  36. Park HG, Yu HS, Park S, Ahn YM, Kim YS, Kim SH. Repeated treatment with electroconvulsive seizures induces HDAC2 expression and down-regulation of NMDA receptor-related genes through histone deacetylation in the rat frontal cortex. Int J Neuropsychopharmacol. 2014;17(9):1487-1500. https://doi.org/10.1017/s1461145714000248
  37. Huang Y, Zhao F, Wang L, Yin H, Zhou C, Wang X. Increased expression of histone deacetylases 2 in temporal lobe epilepsy: a study of epileptic patients and rat models. Synapse. 2012;66(2):151-159. https://doi.org/10.1002/syn.20995
  38. Hoffmann K, Czapp M, Löscher W. Increase in antiepileptic efficacy during prolonged treatment with valproic acid: role of inhibition of histone deacetylases? Epilepsy Res. 2008;81(2-3):107-113. https://doi.org/10.1016/j.eplepsyres.2008.04.019
  39. Ganesan A, Nolan L, Crabb S, Packham G. Epigenetic therapy: histone acetylation, dna methylation and anti-cancer drug discovery. Curr Cancer Drug Targets. 2009;9(8):963-981. https://doi.org/10.2174/156800909790192428
  40. Kobow K, El-Osta A, Blümcke I. The methylation hypothesis of pharmacoresistance in epilepsy. Epilepsia. 2013;54(suppl 2):41-47. https://doi.org/10.1111/epi.12183
  41. Baker EK, Johnstone RW, Zalcberg JR, El-Osta A. Epigenetic changes to the MDR1 locus in response to chemotherapeutic drugs. Oncogene. 2005;24(54):8061-8075. https://doi.org/10.1038/sj.onc.1208955
  42. El-Osta A, Kantharidis P, Zalcberg JR, Wolffe AP. Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol Cell Biol. 2002;22(6):1844-1857. https://doi.org/10.1128/mcb.22.6.1844-1857.2002
  43. Weissman B, Knudsen KE. Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer. Cancer Res. 2009; 69(21):8223-8230. https://doi.org/10.1158/0008-5472.can-09-2166

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.